The Ceylon Language
Table of Contents
	Welcome to Ceylon
	1. Introduction
		Language overview
		Runtime and platform

	Type system
		Mixin inheritance
	Sum types, self types, and type families
	Simplified generics
	Union and intersection types
	Type aliases and type inference
	Metaprogramming

	Object-oriented programming
		Class initialization and instantiation
	Functions, methods, values, and attributes
	Defaulted parameters and variadic parameters
	First-class functions and higher-order programming
	Naming conventions, annotations, and inline documentation
	Named arguments and tree-like structures
	Modularity

	Language module
		Operators and operator polymorphism
	Numeric and character types
	Compile-time safety for null values and flow-sensitive typing
	Streams and comprehensions
	Sequences and tuples

	2. Lexical structure
		Whitespace
	Comments
	Identifiers and keywords
	Literals
		Numeric literals
	Character literals
	String literals

	Operators and delimiters

	3. Type system
		Identifier naming
	Types
		Member distinctness
	Subtyping
	Union types
	Intersection types
	The bottom type
	Principal typing
	Type expressions
	Type abbreviations
	Type inference
	Type alias elimination

	Inheritance
		Inheritance and subtyping
	Extension
	Satisfaction

	Case enumeration and coverage
		Coverage
	Cases
	Generic enumerated types
	Disjoint types

	Generic type parameters
		Type parameters and variance
	Variance validation
	Generic type constraints

	Generic type arguments
		Type arguments and variance
	Type argument substitution
	Type arguments and type constraints
	Applied types and and variance
	Type argument inference

	Principal instantiations and polymorphism
		Inherited instantiations
	Type argument distinctness
	Principal instantiation inheritance
	Principal instantiation of a supertype
	Refinement
	Qualified types
	Realizations

	4. Declarations
		Compilation unit structure
		Toplevel and nested declarations
	Packages

	Imports
		Type imports
	Anonymous class imports
	Function and value imports
	Alias imports
	Wildcard imports
	Imported name

	Parameters
		Parameter lists
	Required parameters
	Defaulted parameters
	Value parameters
	Callable parameters
	Variadic parameters

	Interfaces
		Interface bodies
	Interface inheritance
	Sealed interfaces
	Enumerated interfaces
	Interface aliases
	Dynamic interfaces

	Classes
		Callable type of a class
	Initializer section
	Declaration section
	Class inheritance
	Abstract, final, sealed, formal, and default classes
	Member class refinement
	Anonymous classes
	Enumerated classes
	Class aliases

	Type aliases
	Functions
		Callable type of a function
	Functions with blocks
	Functions with specifiers
	Function return type inference
	Forward declaration of functions
	Functions with multiple parameter lists
	Formal and default methods
	Method refinement

	Values
		References
	Getters
	Setters
	Value type inference
	Forward declaration of values
	Formal and default attributes
	Attribute refinement

	Constructors
		Callable type of a constructor
	Partial constructors
	Constructor delegation

	5. Statements, blocks, and control structures
		Block structure and references
		Declaration name uniqueness
	Scope of a declaration
	Visibility
	Hidden declarations
	References and block structure
	Type inference and block structure
	Unqualified reference resolution
	Qualified reference resolution

	Patterns and variables
		Variables
	Patterns
	Pattern variables
	Tuple patterns
	Entry patterns

	Blocks and statements
		Expression statements
	Control directives
	Specification statements
	Destructuring statements
	Dynamic blocks
	Definite return
	Definite initialization
	Definite uninitialization

	Conditions
		Boolean conditions
	Assignability conditions
	Existence conditions
	Nonemptiness conditions
	Case conditions

	Control structures and assertions
		if/else
	switch/case/else
	for/else
	while
	try/catch/finally
	Assertions

	6. Expressions
		Literal values
		Integer number literals
	Floating point number literals
	Character literals
	Character string literals

	String templates
	Self references
		this
	outer
	super

	Anonymous functions
		Anonymous function parameter type inference

	Compound expressions
		Base expressions
	Member expressions
	Constructor expressions
	Value references
	Callable references
	Static expressions
	Static value references
	Static callable references

	Invocation expressions
		Direct invocations
	Default arguments
	The type of a list of arguments
	Listed arguments
	Spread arguments
	Comprehensions
	Positional argument lists
	Named argument lists
	Anonymous arguments
	Specified arguments
	Inline declaration arguments
	Iterable and tuple enumeration
	Dynamic enumerations

	Conditional expressions, let expressions, and anonymous class expressions
		if/then/else expressions
	switch/case/else expressions
	Let expressions
	Inline anonymous class expressions

	Operators
		Operator precedence
	Operator definition
	Basic invocation and assignment operators
	Equality and comparison operators
	Logical operators
	Operators for handling null values
	Correspondence, subrange, and stream operators
	Operators for creating objects
	Conditional operators
	Arithmetic operators
	Set operators

	Metamodel expressions
		Type of a metamodel expression

	Reference expressions
		Declaration references
	Package and module references
	Type of a reference expression

	7. Annotations
		Annotations of program elements
		Annotation lists
	Annotation arguments

	Annotation definition
		Annotation constructors
	Annotation types
	Constrained annotation types

	Annotation values
	Language annotations
		Declaration modifiers
	Documentation

	Serialization

	8. Execution
		Object instances, identity, and reference passing
		Value type optimizations
	Type argument reification

	Sequential execution and closure
		Frames
	Current instances and current frames
	Current instance of a class or interface
	Current frame of a block
	Initialization
	Class instance optimization
	Execution of expression and specification statements
	Execution of control directives
	Exception propagation
	Initialization of toplevel references
	Initialization of late references

	Execution of control structures and assertions
		Evaluation of condition lists
	Validation of assertions
	Execution of conditionals
	Execution of loops
	Exception handling
	Dynamic type checking

	Evaluation, invocation, and assignment
		Dynamic dispatch
	Evaluation
	Assignment
	Invocation
	Evaluation of anonymous functions
	Evaluation of enumerations
	Evaluation of spread arguments and comprehensions

	Operator expressions
		Operator expression optimization
	Numeric operations

	Evaluation of comprehensions
		for clause
	if clause
	Expression clause

	Concurrency

	9. Module system
		The module runtime and module isolation
		Module isolation for the Java platform
	Module isolation for the JavaScript platform
	Assemblies

	Source layout
	Module architecture
		Module names and version identifiers
	Module archive names for the Java platform
	Module script names for the JavaScript platform
	Source archive names
	Module archives
	Module scripts
	Source archives
	Module repositories
	Package descriptors
	Module descriptors

The Ceylon Language

Say more, more clearly

Gavin King

1.3

Welcome to Ceylon

This project is the work of a team of people who are fans of Java
 and of the Java ecosystem, of its practical orientation, of its culture of
 openness, of its developer community, of its roots in the world of business
 computing, and of its ongoing commitment to portability.
 However, we recognize that the language and class libraries, designed more
 than 15 years ago, are no longer the best foundation for a range of today's
 business computing problems. We further recognize that Java failed in one
 environment it was originally promoted for: the web browser.
The goal of this project is to make a clean break with the legacy
 Java SE platform, by improving upon the Java language and class libraries,
 and by providing a modular architecture for a new platform based upon the
 Java Virtual Machine. A further goal is to bridge the gap between the web
 client and server by supporting execution on JavaScript virtual machines.
Of course, we recognize that the ability to interoperate with existing
 Java code, thereby leveraging existing investment in the Java ecosystem, is a
 critical requirement of any successor to the Java platform.
Java is a simple language to learn and Java code is easy to read and
 understand. Java provides a level of typesafety that is appropriate for
 business computing and enables sophisticated tooling with features like
 refactoring support, code completion, and code navigation. Ceylon aims to
 retain the overall model of Java, while getting rid of some of Java's warts,
 and improving upon Java's facilities for creating abstractions and writing
 generic libraries and frameworks.

Ceylon has the following goals:
	to be appropriate for large scale development, but to also
 be fun,

	to execute on the JVM, and on JavaScript virtual machines,
 and to interoperate with native Java and JavaScript code,

	to provide language-level modularity,

	to be easy to learn for Java and C# developers,

	to eliminate some of Java's verbosity, while retaining its
 readability—Ceylon does not aim to be
 the most concise/cryptic language around,

	to provide an elegant and more flexible syntax to support
 frameworks, declarative programming, and meta-programming, and,
 in particular

	to provide a declarative syntax for expressing hierarchical
 information like user interface definition, externalized data, and
 system configuration, thereby eliminating Java's dependence upon
 XML,

	to support and encourage a more functional style of programming
 with immutable objects and first class functions, alongside the
 familiar imperative mode,

	to expand compile-time typesafety with compile-time safe handling
 of null values, compile-time safe typecasts, and a more typesafe approach
 to reflection, and

	to make it easy to get things done.

Unlike other alternative JVM languages, Ceylon aims to completely replace
 the legacy Java SE class libraries.
Therefore, the Ceylon SDK provides:
	a compiler that compiles Ceylon and Java source to Java
 bytecode, and cross-compiles Ceylon to JavaScript,

	command-line tooling for compiling modules and
 documentation, and managing modules in module repositories,

	Eclipse-based tooling for developing, compiling, testing, and
 debugging programs written in Ceylon,

	a module runtime for modular programs that execute on the Java
 Virtual Machine, and

	a set of class libraries that provides much of the functionality
 of the Java SE platform, together with the core functionality of the
 Java EE platform.

Chapter 1. Introduction

This document defines the syntax and semantics of the Ceylon language.
 The intended audience includes compiler implementors, interested parties
 who wish to contribute to the evolution of the language, and experienced
 developers seeking a precise definition of language constructs. However, in
 light of the newness of the language, we will begin with an overview of the
 main features of the language and SDK. A brief introduction to programming
 in the language may be found at the following address:
http://ceylon-lang.org/documentation/tour/
Language overview

 Ceylon is a general-purpose programming language featuring a syntax similar
 to Java and C#. It is imperative, statically-typed, block-structured,
 object-oriented, and higher-order. By statically-typed,
 we mean that the compiler performs extensive type checking, with the help of
 type annotations that appear in the code. By object-oriented,
 we mean that the language supports user-defined types and features a nominative
 type system where a type is a set of named attributes and operations, and that
 it supports inheritance and subtype polymorphism. By higher-order,
 we mean that every referenceable program element (every attribute, every
 operation, and every type) is also a value. By block-structured,
 we mean to say that the language features lexical scoping and an extremely
 regular recursive syntax for declarations and statements.

 Ceylon improves upon the Java language and type system to reduce verbosity
 and increase typesafety compared to Java and C#. Ceylon encourages a more
 functional, somewhat less imperative style of programming, resulting in code
 which is easier to reason about, and easier to refactor.

Runtime and platform

 Ceylon programs execute in any standard Java Virtual Machine or on any
 JavaScript virtual machine, and take advantage of the memory management and
 concurrency features of the virtual machine in which they execute. Ceylon
 programs are packaged into modules with well-defined
 inter-module dependencies, and always execute inside a runtime environment
 with module isolation.

 The Ceylon compiler is able to compile Ceylon code that calls Java classes or
 interfaces, and Java code that calls Ceylon classes or interfaces. JavaScript
 code is able to interact with Ceylon classes and functions compiled to JavaScript.
 Via a special dynamic mode, code written in Ceylon may call
 functions defined natively in JavaScript.

 Moreover, Ceylon provides its own native SDK as a replacement for the Java
 platform class libraries. Certain SDK modules depend upon services available
 only on the Java platform. Other SDK modules, including the core
 language module, are cross-platform and may also be used
 in a JavaScript virtual machine.

 Finally, the language supports the development of cross-platform modules that
 contain platform-specific implementation code, via the native
 annotation.

import java.lang { System }

shared native void hello();

shared native("jvm") void hello() {
 System.console()?.printf("Hello, world!");
}

shared native("js") void hello() {
 dynamic {
 alert("Hello, world!");
 }
}

Type system

 Ceylon, like Java and C#, features a hybrid type system with both subtype
 polymorphism and parameteric polymorphism. A type is either a stateless
 interface, a stateful class, a
 type parameter, or a union or
 intersection of other types. A class, interface, or
 type parameter may be defined as a subtype of another type. A class or
 interface may declare type parameters, which abstract the definition of the
 class or interface over all types which may be substituted for the type
 parameters.

 Like C#, and unlike Java, Ceylon's type system is fully reified. In
 particular, generic type arguments are reified, eliminating many problems
 that result from type erasure in Java.

 There are no primitive types or arrays in Ceylon—every Ceylon type can
 be represented within the language itself. So all values are instances of the
 type hierarchy root Anything, which is a class. However,
 the Ceylon compiler is permitted to optimize certain code to take advantage
 of the optimized performance of primitive types on the Java or JavaScript VM.

 Furthermore, all types inferred or even computed internally by the Ceylon
 compiler are expressible within the language itself. Within the type system,
 non-denoteable types simply do not arise. The type system
 is based upon computation of principal types. There is no
 legal expression which does not have a unique principal type expressible within
 the language. The principal type of an expression is a subtype of all other
 types to which the expression could be soundly assigned.

Mixin inheritance

 Ceylon supports a restricted form of multiple inheritance, often called
 mixin inheritance. A class must extend exactly one other
 class. But a class or interface may satisfy (extend or implement) an arbitrary
 number of interfaces.

 Classes hold state and define logic to initialize that state when the class is
 instantiated. A concrete class is a class that contains only concrete member
 definitions. Concrete classes may be directly instantiated. An abstract class
 may have formal (unimplemented) member declarations.
 Abstract classes may not be instantiated.

 Interfaces may define concrete and formal members, but may not hold state
 (references to other objects) or initialization logic. This restriction helps
 eliminate the problems traditionally associated with multiple inheritance.
 Ceylon never performs any kind of "linearization" of the supertypes of a type.
 Interfaces may not be directly instantiated.

Sum types, self types, and type families

 Ceylon does not feature Java-style enumerated types as a first-class construct.
 Instead, any abstract type may specify its cases—an
 enumerated list of instances and/or subtypes. This facility is used to simulate
 both enumerated types and functional-style algebraic sum types.

interface Identity of Person | Organization { ... }
abstract class Variance() of covariant | contravariant | invariant { ... }

 A closely related feature is support for self types and
 type families. A self type is a type parameter of an
 abstract type (like Comparable) which represents the type of
 a concrete instantiation (like String) of the abstract type,
 within the definition of the abstract type itself.

interface Comparable<in Other> of Other
 given Other satisfies Comparable<Other> { ... }

 In a type family, the self type of a type is declared not by the type itself,
 but by a containing type which groups together a set of related types.

Simplified generics

 Ceylon doesn't have raw types, implicit bounds, or wildcard capture. And the
 Ceylon compiler never even uses any kind of "non-denotable" type to reason
 about the type system. So generics-related error messages are understandable
 to humans.

 Ceylon features declaration-site variance. A type parameter
 may be marked as covariant or contravariant by the class or interface that
 declares the parameter.

interface Source<out Item> { ... }
interface Sink<in Item> { ... }

 In order to support interoperation with Java, Ceylon also features
 Java-style use-site variance, with a much cleaner syntax
 than Java's. A type argument may be marked as covariant or contravariant.

List<out Element> javaArrayList = ArrayList<Element>();

 Ceylon has a somewhat more expressive system of generic type constraints with
 a cleaner, more regular syntax. The syntax for declaring constraints on a type
 parameter looks very similar to a class or interface declaration. A type
 parameter may have upper bound type constraints or even
 enumerated bounds.

interface Producer<out Value, in Rate>
 given Value satisfies Object
 given Rate of Float | Decimal { ... }

Union and intersection types

 A union type, for example String|Number,
 or intersection type, for example
 Identifiable&List<String>, may be formed from
 two or more types defined elsewhere.

 Union types make it possible to write code that operates polymorphically
 over types defined in disparate branches of the type hierarchy without the
 need for intermediate adaptor classes.

Float distance(Point|Location x, Point|Location y) => ... ;
Intersection types make it possible to operate polymorphically over
 all subtypes of a list of types.
void persistRemotely(Persistent&Serializable stuff) { ... }

 Union and intersection types provide some of the benefits of structural
 ("duck") typing, within the confines of a nominative type system, and
 therefore certain Ceylon idioms are reminiscent of code written in
 dynamically-typed languages.

 Union and intersection types underly the whole system of principal typing
 in Ceylon, forming the foundation for type inference and flow-sensitive
 typing. In particular, they play a central role in generic type argument
 inference. For example, the following expression has type
 HashMap<String,Integer|Float>:

HashMap { "float"->0.0, "integer"->0 }

Type aliases and type inference

 Type aliases and type inference help reduce the verbosity of code which
 uses generic types, eliminating the need to repeatedly specify generic
 type arguments.

 A type alias is similar to a C-style typedef.

interface Strings => Sequence<String>;
alias Number => Integer|Float|Whole|Decimal;

 Local type inference allows a type annotation to be
 eliminated altogether. The type of a block-local value or function is
 inferred from its definition if the keyword value or
 function occurs in place of the type declaration.

value name = person.name;
function sqrt(Float x) => x^0.5;

 The type of a control-structure variable also may be inferred.

for (n in 0..max) { ... }

 Ceylon features an especially elegant approach to generic type argument
 inference, making it possible to instantiate container types, even
 inhomogeneous container types, without the need to explicitly mention any
 types at all.

value numbers = { -1, 0, -1, -1.0, 0.0, 1.0 };

 By limiting type inference to local declarations, Ceylon ensures that all
 types may be inferred by the compiler in a single pass of the source code.
 Type inference works in the "downward" and "outward" directions. The compiler
 is able to determine the type of an expression without considering the rest
 of the statement or declaration in which it appears.

Metaprogramming

In other statically typed languages, runtime metaprogramming,
 or reflection, is a messy business involving
 untypesafe strings and typecasting. Even worse, in Java, generic
 type arguments are erased at runtime, and unavailable via reflection.
 Ceylon, uniquely, features a typesafe metamodel
 and typed metamodel expressions. Since generic
 type arguments are reified at runtime, the metamodel fully captures
 generic types at both compile time and execution time.
Attribute<String,Integer> stringSize = `String.size`;
Ceylon's support for program element annotations
 is based around this metamodel. Annotations are more flexible than
 in Java or C#, and have a much cleaner syntax.

Object-oriented programming

The primary unit of organization of an object-oriented program is
 the class. But Ceylon, unlike Java, doesn't require that every
 function or value belong to a class. It's perfectly normal to program
 with a mix of classes and toplevel functions. Contrary to popular belief,
 this does not make the program less object-oriented. A function is, after
 all, an object.
Class initialization and instantiation

 A Ceylon class may have one or more named constructors, declared
 using the new keyword.

class Point {
 Float x;
 Float y;
 new create(Float x, Float y) {
 this.x = x;
 this.y = y;
 }
 ...
}

 However, since constructors are often unnecessarily verbose, it is more
 common to define a Ceylon class with a parameter list, and exactly one
 initializer—the body of the class.

class Point(Float x, Float y) { ... }

 The Ceylon compiler guarantees that the value of any attribute of a class
 is initialized before it is used in an expression.

 A class may be a member of an outer class. Such a member class may be
 refined (overridden) by a subclass of the outer class. Instantiation is
 therefore a polymorphic operation in Ceylon, eliminating the need for a
 factory method in some circumstances.

 Ceylon provides a streamlined syntax for defining anonymous
 classes. An anonymous class is a class which is instantiated
 only in exactly the place it is defined. Among other uses, the
 object declaration is useful for creating singleton
 objects or locally-scoped interface implementations.

object origin extends Point(0.0, 0.0) {}

 Strictly speaking, an object declaration is just an
 abbreviated way to write a class with a value constructor.
 A value constructor defines a named instance of a class:

class Point {
 Float x;
 Float y;
 new create(Float x, Float y) {
 this.x = x;
 this.y = y;
 }
 new origin {
 this.x = 0.0;
 this.y = 0.0;
 }
 ...
}

Functions, methods, values, and attributes

Functions and values are
 the bread and butter of programming. Ceylon functions are similar to Java
 methods, except that they don't need to belong to a class. Ceylon values
 are polymorphic, and abstract their internal representation, similar to
 C# properties.
String name => firstName + " " + lastName;

 A function belonging to a type is called a method.
 A value belonging to a type is called an attribute.
 A function or value may be declared as a direct toplevel
 member of a package, or as a member of a singleton anonymous class. This
 approach, along with certain other features, gives the language a more
 regular block structure.

 The Ceylon compiler guarantees that any attribute or value is initialized
 before it is used in an expression. By default, an attribute or value may
 not be reassigned a new value after its initial value has been specified.
 Mutable attributes and variable values must be explicitly declared using
 the variable annotation.

variable value count = 0;

 Ceylon does not support function overloading. Each method of a type has a
 distinct name.

Defaulted parameters and variadic parameters

 Instead of method and constructor overloading, Ceylon supports parameters
 with default values and variadic parameters.

void addItem(Product product, Integer quantity=1) { ... }
String join(String* strings) { ... }

 Union types also help alleviate the need for overloading.

String format(String formatString, String|Float|Integer* values) => ... ;
Therefore, a single method in Ceylon may emulate the signatures of
 several overloaded methods in Java.

First-class functions and higher-order programming

 Ceylon supports first-class function types and higher-order functions. A
 function declaration may specify a callable parameter
 that accepts references to other functions with a certain signature.

String find(Boolean where(String string)) { ... }

 The argument of such a callable parameter may be either a reference to a
 named function declared elsewhere, or a new function defined inline as part
 of the method invocation.

value result = { "C", "Java", "Ceylon" }.find((String s) => s.size>1);

 The type of a function is expressed within the type system as an
 instantiation of the interface Callable. The
 parameter types are expressed as a tuple type. So the type of the
 function (String s) => s.size>1 is
 Callable<Boolean,[String]>, which may be
 abbreviated to Boolean(String).

 Unlike many other languages with higher-order functions, Ceylon supports
 abstraction over function and tuple types of arbitrary arity.

 References to methods and attributes may also be used as functions.

value names = people.map(Person.name);
value values = keys.map(keyedValues.get);

Naming conventions, annotations, and inline documentation

 The Ceylon compiler enforces the traditional Smalltalk naming convention:
 type names begin with an initial uppercase letter—for example,
 Liberty or RedWine—member names
 and local names with an initial lowercase letter or underscore—for
 example, blonde, immanentize() or
 boldlyGo().

 These restrictions allow a much cleaner syntax for program element
 annotations than the syntax found in either Java or C#. Declaration
 "modifiers" like shared, abstract,
 and variable aren't keywords in Ceylon, they're ordinary
 annotations.

"Base type for higher-order abstract stuff."
shared abstract class AbstractMetaThingy() { ... }

 The documentation compiler reads inline documentation specified
 using the doc annotation.

Named arguments and tree-like structures

 Ceylon's named argument lists provide an elegant means of initializing objects
 and collections. The goal of this facility is to replace the use of XML for
 expressing hierarchical structures such as documents, user interfaces,
 configuration and serialized data.

Html page = Html {
 doctype = html5;
 Head { title = "Ceylon: home page"; };
 Body {
 H2 ("Welcome to Ceylon ``language.version``!"),
 P ("Now get your code on :)")
 };
}

 An especially important application of this facility is Ceylon's built-in
 support for program element annotations.

Modularity

 Toplevel declarations are organized into packages and
 modules. Ceylon features language-level access control
 via the shared annotation which can be used to express
 block-local, package-private, module-private, and public visibility for
 a program element. There's no equivalent to Java's protected.

A module corresponds to a versioned packaged archive. Its
 module descriptor expresses its dependencies to other
 modules. The tooling and execution model for the language is based around
 modularity and module archives.

Language module

The Ceylon language module defines a set of built-in types which form
 the basis for several powerful features of the language. The language itself
 defines extensive syntactic "sugar" that makes it easier and more convenient
 to interact with the language module.
Operators and operator polymorphism

 Ceylon features a rich set of operators, including most of the operators
 supported by C and Java. True operator overloading is not supported.
 However, each operator is defined to act upon a certain class or interface
 type, allowing application of the operator to any class which extends or
 satisfies that type. For example, the + operator may be
 applied to any class that satisfies the interface Summable.
 This approach is called operator polymorphism.

Numeric and character types

Ceylon's numeric type system is much simpler than C, C# or Java, with
 exactly three built-in numeric types (compared to six in Java and eleven in
 C#). The built-in types are classes representing integers, floating point
 numbers, and bytes. Integer and Float
 values are signed, with 64 bits of precision by default, and may be optimized
 for 32 bit architectures via use of the small annotation.
 The Byte class represents 8-bit values with modular
 arithmetic, sidestepping the question of whether a byte is signed or
 unsigned.
The module ceylon.math provides two additional
 numeric types representing arbitrary precision integers and arbitrary
 precision decimals.
Ceylon has Character and String
 classes, and, unlike Java or C#, every character is a full 32-bit Unicode
 codepoint. Conveniently, a String is a
 List<Character>.

Compile-time safety for null values and flow-sensitive typing

 There is no primitive null in Ceylon. The null value is an instance of
 the class Null. An optional type
 is a union type like Null|String, which may be
 abbreviated to String?. An optional type is never
 assignable to a non-optional type except via use of the special-purpose
 if (exists ...) construct. Thus, the Ceylon compiler
 is able to detect illegal use of a null value at compile time. Therefore,
 there is no equivalent to Java's NullPointerException
 in Ceylon.

 Similarly, there are no C-style typecasts in Ceylon. Instead, the
 if (is ...) and case (is ...)
 constructs may be used to test and narrow the type of an object reference
 in one step, without risk of a ClassCastException.
 This facility is called flow-sensitive typing.

String name(Organization|Person entity) {
 switch (entity)
 case (is Organization) {
 return entity.tradeName else entity.legalName;
 }
 case (is Person) {
 return entity.nickName else entity.firstName;
 }
}

 Alternatively, type assertions, written
 assert (is ...) or assert (exists ...)
 may be used to narrow the type of a reference.

value arg = process.arguments[0];
"must specify an amount"
assert (exists arg);
"not a legal positive integer amount"
assert (exists amount = parseInteger(arg), amount>0);

 The combination of case (is ...) with sum types
 amounts to a kind of language-level support for the visitor pattern.

Streams and comprehensions

The interface Iterable represents a stream of
 values, which might be evaluated lazily. This interface is of central
 importance in the language module, and so the language provides a
 syntactic abbreviation for the type of an iterable object. The
 abbreviation {String*} means
 Iterable<String>. There is a convenient syntax
 for instantiating an iterable object, given a list of values:
{String*} words = {"hello", "world", "goodbye"};
A nonempty iterable is an iterable object
 which always produces at least one value. A nonempty iterabe type is
 written {String+}. Distinguishing nonempty streams
 of values lets us correctly express the type of functions like
 max():
{Float+} oneOrMore = ;
{Float*} zeroOrMore = ;
Float maxOfOneOrMore = max(oneOrMore); //never null
Float? maxOfZeroOrMore = max(zeroOrMore); //might be null
Comprehensions are an expressive syntax for
 filtering and transforming streams of values. For example, they may be
 used when instantiating an iterable object or collection:
value adults = { for (p in people) if (p.age>18) p.name };
value peopleByName = HashMap { for (p in people) p.name->p };
Comprehensions are evaluated lazily.

Sequences and tuples

Sequences are Ceylon's version of arrays.
 However, the Sequential interface does not provide
 operations for mutating the elements of the sequence—sequences
 are considered immutable. Because this interface is so useful, a type
 like Sequential<String> may be abbreviated to
 [String*], or, for the sake of tradition, to
 String[].
A nonempty sequence is a kind of sequence
 which always has at least one element. A nonempty sequence type is
 written [String+]. The special-purpose
 if (nonempty ...) construct narrows a sequence
 type to a nonempty sequence type.
Tuples are a kind of sequence where the
 type of each element is encoded into the static type of the tuple.
 Tuple is just an ordinary class in Ceylon, but
 the language lets us write down tuple types using a streamlined
 syntax. For example, [Float,Float] is a pair of
 Floats. There's also a convenient syntax for
 instantiating tuples and accessing their elements.
[Float,Float] origin = [0.0, 0.0];
Float x = origin[0];
Float y = origin[1];
Null z = origin[2]; //only two elements!
Tuples and nonempty sequences support pattern-based
 destructuring.
value [x, y] = origin;

Chapter 2. Lexical structure

Every Ceylon source file is a sequence of Unicode characters. Lexical
 analysis of the character stream, according to the grammar specified in this
 chapter, results in a stream of tokens. These tokens form the input of the
 parser grammar defined in the later chapters of this specification. The
 Ceylon lexer is able to completely tokenize a character stream in a single
 pass.
Whitespace

Whitespace is composed of strings of Unicode
 SPACE, CHARACTER TABULATION,
 FORM FEED (FF), LINE FEED (LF) and
 CARRIAGE RETURN (CR) characters.
Whitespace: " " | Tab | Formfeed | Newline | CarriageReturn
Tab: "\{CHARACTER TABULATION}"
Formfeed: "\{FORM FEED (FF)}"
Newline: "\{LINE FEED (LF)}"
CarriageReturn: "\{CARRIAGE RETURN (CR)}"
Outside of a comment, string literal, or single quoted literal,
 whitespace acts as a token separator and is immediately discarded by
 the lexer. Whitespace is not used as a statement separator.
Source text is divided into lines by line-terminating
 character sequences. The following Unicode character sequences
 terminate a line:
	LINE FEED (LF),

	CARRIAGE RETURN (CR), and

	CARRIAGE RETURN (CR) followed by
 LINE FEED (LF).

Comments

There are two kinds of comments:
	a multiline comment begins with
 /* and extends until */,
 and

	an end-of-line comment begins with
 // or #! and extends until
 the next line terminating character sequence.

Both kinds of comments can be nested.
LineComment: ("//"|"#!") ~(Newline | CarriageReturn)* (CarriageReturn Newline | CarriageReturn | Newline)?
MultilineComment: "/*" (MultilineCommentCharacter | MultilineComment)* "*/"
MultilineCommentCharacter: ~("/"|"*") | ("/" ~"*") => "/" | ("*" ~"/") => "*"
The following examples are legal comments:
//this comment stops at the end of the line
/*
 but this is a comment that spans
 multiple lines
*/
#!/usr/bin/ceylon
Comments are treated as whitespace by both the compiler and documentation
 compiler. Comments may act as token separators, but their content is immediately
 discarded by the lexer and they are not visible to the parser.

Identifiers and keywords

Identifiers may contain letters, digits and
 underscores.
LowercaseCharacter: LowercaseLetter | "_"
UppercaseCharacter: UppercaseLetter
IdentifierCharacter: LowercaseCharacter | UppercaseCharacter | Number
The lexer classifies Unicode uppercase letters, lowercase letters,
 and numeric characters depending on the general category of the character
 as defined by the Unicode standard.
	
 A LowercaseLetter is any character whose
 general category is Ll or any character whose
 general category is Lo or Lm
 which has the property Other_Lowercase.

	
 An UppercaseLetter is any character whose
 general category is Lu or Lt,
 or any character whose general category is Lo or
 Lm which does not have the property
 Other_Lowercase.

	
 A Number is any character whose general
 category is Nd, Nl, or
 No.

All identifiers are case sensitive: Person and
 person are two different legal identifiers.
The lexer distinguishes identifiers which begin with an initial
 uppercase character from identifiers which begin with an initial lowercase
 character or underscore. Additionally, an identifier may be qualified using
 the prefix \i or \I to disambiguate it
 from a reserved word or to explicitly specify whether it should be considered
 an initial uppercase or initial lowercase identifier.
LIdentifier: LowercaseCharacter IdentifierCharacter* | "\i" IdentifierCharacter+
UIdentifier: UppercaseCharacter IdentifierCharacter* | "\I" IdentifierCharacter+
The following examples are legal identifiers:
Person
name
personName
_id
x2
\I_id
\Iobject
\iObject
\iclass
The prefix \I or \i is not
 considered part of the identifier name. Therefore, \iperson
 is just an initial lowercase identifier named person and
 \Iperson is an initial uppercase
 identifier named person.
The following reserved words are not legal identifier names unless they
 appear escaped using \i or \I:

 assembly module package import
 alias class interface object given value assign void function new
 of extends satisfies abstracts
 in out
 return break continue throw
 assert dynamic
 if else switch case for while try catch finally then let
 this outer super
 is exists nonempty

Note: assembly and abstracts
 are reserved for possible use in a future release of the language, for declaration
 of assemblies and lower bound type constraints respectively.

Literals

A literal is a single token that represents a
 Unicode character, a character string, or a numeric value.
Numeric literals

An integer literal may be expressed in decimal,
 hexadecimal, or binary notation:
IntegerLiteral: DecimalLiteral | HexLiteral | BinLiteral
A decimal literal has a list of digits and an
 optional magnitude:
DecimalLiteral: Digits Magnitude?
Hexadecimal literals are prefixed by #:
HexLiteral: "#" HexDigits
Binary literals are prefixed by $:
BinLiteral: "$" BinDigits
A floating point literal is distinguished by the
 presence of a decimal point or fractional magnitude:
FloatLiteral: NormalFloatLiteral | ShortcutFloatLiteral
Most floating point literals have a list of digits including a decimal
 point, and an optional exponent or magnitude.
NormalFloatLiteral: Digits "." FractionalDigits (Exponent | Magnitude | FractionalMagnitude)?
The decimal point is optional if a fractional magitude is specified.
ShortcutFloatLiteral: Digits FractionalMagnitude
Decimal digits may be separated into groups of three using an underscore.
Digits: Digit+ | Digit{1..3} ("_" Digit{3})+
FractionalDigits: Digit+ | (Digit{3} "_")+ Digit{1..3}
Hexadecimal or binary digits may be separated into groups of four using
 an underscore. Hexadecimal digits may even be separated into groups of two.
HexDigits: HexDigit+ | HexDigit{1..4} ("_" HexDigit{4})+ | HexDigit{1..2} ("_" HexDigit{2})+
BinDigits: BinDigit+ | BinDigit{1..4} ("_" Digit{4})+
A digit is a decimal, hexadecimal, or binary digit.
Digit: "0".."9"
HexDigit: "0".."9" | "A".."F" | "a".."f"
BinDigit: "0"|"1"
A floating point literal may include either an exponent
 (for scientific notation) or a magnitude (an SI unit
 prefix). A decimal integer literal may include a magnitude.
Exponent: ("E"|"e") ("+"|"-")? Digit+
Magnitude: "k" | "M" | "G" | "T" | "P"
FractionalMagnitude: "m" | "u" | "n" | "p" | "f"
The magnitude of a numeric literal is interpreted as follows:
	k means e+3,

	M means e+6,

	G means e+9,

	T means e+12,

	P means e+15,

	m means e-3,

	u means e-6,

	n means e-9,

	p means e-12, and

	f means e-15.

The following examples are legal numeric literals:
69
6.9
0.999e-10
1.0E2
10000
1_000_000
12_345.678_9
1.5k
12M
2.34p
5u
$1010_0101
#D00D
#FF_FF_FF
The following are not valid numeric literals:
.33 //Error: floating point literals may not begin with a decimal point
1. //Error: floating point literals may not end with a decimal point
99E+3 //Error: floating point literals with an exponent must contain a decimal point
12_34 //Error: decimal digit groups must be of length three
#FF.00 //Error: floating point numbers may not be expressed in hexadecimal notation

Character literals

A single character literal consists of a Unicode
 character, inside single quotes.
CharacterLiteral: "'" Character "'"
Character: ~("'" | "\") | EscapeSequence
A character may be identified by an escape sequence.
 Every escape sequence begins with a backslash. An escape sequence is replaced
 by its corresponding Unicode character during lexical analysis.
EscapeSequence: "\" (SingleCharacterEscape | "{" CharacterCode "}")
SingleCharacterEscape: "b" | "t" | "n" | "f" | "r" | "e" | "\" | """ | "'" | "`" | "0"
The single-character escape sequences have their traditional interpretations as
 Unicode characters:
	\b means BACKSPACE,

	\t means CHARACTER TABULATION,

	\n means LINE FEED (LF),

	\f means FORM FEED (FF),

	\r means CARRIAGE RETURN (CR),

	\e means ESCAPE,

	\\, \`, \',
 and \" mean REVERSE SOLIDUS,
 GRAVE ACCENT, APOSTROPHE, and
 QUOTATION MARK, respectively, and, finally

	\0 means NULL.

A Unicode codepoint escape is a two-, four-, or six-digit hexadecimal literal
 representing an integer in the range 0 to 10FFFF, or a Unicode character name,
 surrounded by braces, and means the Unicode character with the specified codepoint or
 character name.
CharacterCode: "#" (HexDigit{2} | HexDigit{4} | HexDigit{6}) | UnicodeCharacterName
Legal Unicode character names are defined by the Unicode specification.
The following are legal character literals:
'A'
'#'
' '
'\n'
'\{#212B}'
'\{ALCHEMICAL SYMBOL FOR GOLD}'

String literals

A character string literal is a sequence of Unicode
 characters, inside double quotes.
StringLiteral: """ StringCharacter* """
StringCharacter: ~("\" | """ | "`") | "`" ~"`" | EscapeSequence | EscapedBreak
A string literal may contain escape sequences. An escape sequence is
 replaced by its corresponding Unicode character during lexical analysis.
A line-terminating character sequence may be escaped with a backslash,
 in which case the escaped line termination is removed from the string literal
 during lexical analysis.
EscapedBreak: "\" (CarriageReturn Newline | CarriageReturn | Newline)
A sequence of two backticks is used to delimit an interpolated expression
 embedded in a string template.
StringStart: """ StringCharacter* "``"
StringMid: "``" StringCharacter* "``"
StringEnd: "``" StringCharacter* """
A verbatim string is a character sequence delimited
 by a sequence of three double quotes. Verbatim strings do not contain escape
 sequences or interpolated expressions, so every character occurring inside the
 verbatim string is interpreted literally.
VerbatimStringLiteral: """"" VerbatimCharacter* """""
VerbatimCharacter: ~""" | """ ~""" | """ """ ~"""
The following are legal strings:
"Hello!"
"\{#00E5}ngstr\{#00F6}ms"
" \t\n\f\r,;:"
"\{POLICE CAR} \{TROLLEYBUS} \{WOMAN WITH BUNNY EARS}"
"""This program prints "hello world" to the console."""
The column in which the first character of a string literal occurs, excluding the
 opening quote characters, is called the initial column of the string
 literal. Every following line of a multiline string literal must contain whitespace up to
 the initial column. That is, if the string contents begin at the nth
 character in a line of text, the following lines must start with n
 whitespace characters. This required whitespace is removed from the string literal during
 lexical analysis.

Operators and delimiters

The following character sequences are operators and/or punctuation:

 , ; ...
 { } () [] `
 ?
 . ?. *.
 = =>
 + - * / % ^ **
 ++ --
 .. : ->
 ! && ||
 ~ & |
 === == != < > <= >= <=>
 += -= /= *= %= |= &= ~= ||= &&=

Certain symbols serve dual or multiple purposes in the grammar.

Chapter 3. Type system

Every value in a Ceylon program is an instance of a type that can be expressed
 within the Ceylon language as a class. The language does not
 define any primitive or compound types that cannot, in principle, be expressed within
 the language itself.
A class, fully defined in the section called “Classes”, is a recipe for producing
 new values, called instances
 of the class (or simply objects), and defines the operations and
 attributes of the resulting values. A class instance may hold references to other
 objects, and has an identity distinct from these references.
Each class declaration defines a type. However, not all types are classes. It
 is often advantageous to write generic code that abstracts the concrete class of a
 value. This technique is called polymorphism. Ceylon features
 two different kinds of polymorphism:
	subtype polymorphism, where a subtype B
 inherits a supertype A, and

	parametric polymorphism, where a type definition
 A<T> is parameterized by a generic type
 parameter T.

Ceylon, like Java and many other object-oriented languages, features a single
 inheritance model for classes. A class may directly inherit at most one other class,
 and all classes eventually inherit, directly or indirectly, the class
 Anything defined in the module ceylon.language,
 which acts as the root of the class hierarchy.
A truly hierarchical type system is much too restrictive for more abstract
 programming tasks. Therefore, in addition to classes, Ceylon recognizes the following
 kinds of type:
	An interface, defined in the section called “Interfaces”,
 is an abstract type schema that cannot itself be directly instantiated. An
 interface may define concrete members, but these members may not hold references
 to other objects. A class may inherit one or more interfaces. An instance of a
 class that inherits an interface is also considered an instance of the interface.

	A generic type parameter, defined in
 the section called “Generic type parameters”, is considered a type within the
 declaration that it parameterizes. In fact, it is an abstraction over many types:
 it generalizes the declaration to all types which could be assigned to the
 parameter.

	An applied type, defined in
 the section called “Generic type arguments”, is formed by specifying arguments for the
 generic type parameters of a parameterized type declaration, and is called an
 instantiation of the parameterized type declaration.

	A union type, defined in the section called “Union types”,
 is a type to which each of an enumerated list of types is assignable.

	An intersection type, defined in
 the section called “Intersection types”, is a type which is assignable to each of an
 enumerated list of types.

Although we often use the term parameterized type or even
 generic type to refer to a parameterized type definition, it is
 important to keep in mind that a parameterized type definition is not itself a type.
 Rather, it is a type constructor, a function that maps types
 to types. Given a list of type arguments, the function yields an applied type.
In light of the fact that Ceylon makes it so easy to construct new types from
 existing types without the use of inheritance, by forming unions,
 intersections, and applied types, it's often useful to assign a name to such a type.
	A type alias, defined in
 the section called “Type aliases”, the section called “Class aliases”,
 and the section called “Interface aliases”, is a synonym for an expression
 involving other types or generic types. A type alias may itself be
 generic.

The Ceylon type system is much more complete than most other object oriented
 languages. In Ceylon, it's possible to answer questions that might at first sound
 almost nonsensical if you're used to languages with more traditional type systems.
 For example:
	What is the type of a variable that may or may not hold a value of
 type Element?

	What is the type of a parameter that accepts either an
 Integer or a Float?

	What is the type of a parameter that accepts values which are instances
 of both Persistent and Printable?

	What is the type of a function which accepts any non-null value and
 returns a String?

	What is the type of a function that accepts one or more
 Strings and returns an iterable object producing at least
 one String?

	What is the type of a sequence consisting of a String
 followed by two Floats?

	What is the type of a list with no elements?

The answers, as we shall see, are: Element?,
 Integer|Float, Persistent&Printable,
 String(Object), {String+}(String+),
 [String,Float,Float], and List<Nothing>.
It's important that there is always a unique "best" answer to questions
 like these in Ceylon. The "best" answer is called the principal type
 of an expression. Every other type to which the expression is
 assignable is a supertype of the principal type.
Thus, every legal Ceylon expression has a unique, well-defined type,
 representable within the type system, without reference to how the expression
 is used or to what type it is assigned. This is the case even when type inference
 or type argument inference comes into play.
Neither this specification nor the internal implementation of the Ceylon
 compiler itself use any kind of "non-denotable" types. Every type mentioned
 here or inferred internally by the compiler has a representation within the
 language itself. Thus, the programmer is never exposed to confusing error
 messages referring to mysterious types that are not part of the syntax of the
 language.
Identifier naming

The Ceylon compiler enforces identifier naming conventions. Types
 must be named with an initial uppercase letter. Values, functions, and
 constructors must be named with an initial lowercase letter or underscore.
 The grammar for identifiers is defined by
 the section called “Identifiers and keywords”.
TypeName: UIdentifier
MemberName: LIdentifier
A package or module name is a sequence of identifiers.
PackageName: LIdentifier | UIdentifier
Ceylon defines three identifier namespaces:
	classes, interfaces, type aliases, and type parameters
 share a single namespace,

	functions and values, including parameters, and constructors
 share a single namespace, and

	packages and modules have their own dedicated namespace.

The Ceylon parser is able to unambiguously identify which namespace an
 identifier belongs to.
An identifier that begins with an initial lowercase letter may be
 forced into the namespace of types by prefixing the
 identifier \I. An identifier that begins with an initial
 uppercase letter may be forced into the namespace of methods and attributes
 by prefixing the identifier \i. A keyword may be used as
 an identifier by prefixing the keyword with either \i or
 \I. This allows interoperation with other languages like
 Java and JavaScript which do not enforce these naming conventions.

Types

A type or type schema is a name
 (an initial uppercase identifier) and an optional list of type parameters, with
 a set of:
	value schemas,

	function schemas, and

	class schemas.

The value, function, and class schemas are called the members
 of the type.
Speaking formally:
	A value schema is a name (an initial
 lowercase identifier) with a type and mutability.

	A function schema is a name (an initial
 lowercase identifier) and an optional list of type parameters, with a
 type (often called the return type) and a sequence
 of one or more parameter lists.

	A class schema is a type schema with either
 one parameter list, or a list of constructor schemas.

	A callable constructor schema is a name (an
 initial lowercase identifier) with exactly one parameter list.

	A value constructor schema is a name (an
 initial lowercase identifier).

	A parameter list is a list of names (initial
 lowercase identifiers) with types. The signature of
 a parameter list is formed by discarding the names, leaving the list of
 types.

Speaking slightly less formally, we usually refer to an attribute,
 method, or member class of a type, meaning
 a value schema, function schema, or class schema that is a member of the type.
A function or value schema may occur outside of a type schema. If it occurs
 directly in a compilation unit, we often call it a toplevel function
 or toplevel value.
A value schema, function schema, or parameter list with a missing type or types
 may be defined. Any such schema, or parameter list with a missing type is called
 partially typed.
Two signatures are considered identical if they have exactly the same types, at
 exactly the same positions, and missing types at exactly the same positions.
Member distinctness

Overloading is illegal in Ceylon. A type may not have:
	two attributes with the same name,

	a method and an attribute with the same name,

	two methods with the same name, or

	two member classes with the same name.

Note: the Ceylon compiler itself is able to represent type schemas
 with overloaded members and reason about overloading, and does so when compiling
 code that calls native Java types. However, this behavior is outside the scope of
 this specification.

Subtyping

A type may be a subtype of another type. Subtyping obeys
 the following rules:
	Identity: X is a subtype of X.

	Transitivity: if X is a subtype of Y
 and Y is a subtype of Z then
 X is a subtype of Z.

	Noncircularity: if X is a subtype of Y
 and Y is a subtype of X then
 Y and X are the same type.

	Single root: all types are subtypes of the class Anything
 defined in the module ceylon.language.

Also, every interface type is a subtype of the class Object
 defined in ceylon.language.
If X is a subtype of Y, then:
	For each non-variable attribute of Y,
 X has an attribute with the same name, whose type is
 assignable to the type of the attribute of Y.

	For each variable attribute of Y,
 X has a variable attribute with the
 same name and the same type.

	For each method of Y, X has a
 method with the same name, with the same number of parameter lists, with
 the same signatures, and whose return type is assignable to the return type
 of the method of Y.

	For each member class of Y, X
 has a member class of the same name, with a parameter list with the same
 signature, that is a subtype of the member class of Y.

Furthermore, we say that X is assignable
 to Y.

Union types

For any types X and Y, the
 union, or disjunction, X|Y,
 of the types may be formed. A union type is a supertype of both of the given types
 X and Y, and an instance of either type is an
 instance of the union type.
Note: the type expression X|Y is pronounced
 “x or y”.

The union type constructor | is associative, so the union
 of three types, X, Y, and Z,
 may be written X|Y|Z.
UnionType: IntersectionType ("|" IntersectionType)*
If X and Y are both subtypes of a third type
 Z, then X|Y inherits all members of Z.
void write(String|Integer|Float printable) { ... }
Union types satisfy the following rules, for any types X,
 Y, and Z:
	
 Commutativity: X|Y is the same
 type as Y|X.

	
 Associativity: X|<Y|Z> is the same
 type as <X|Y>|Z, where the angle
 brackets denote grouping.

	
 Simplification: if X is a subtype
 of Y, then X|Y
 is the same type as Y.

	
 Subtypes: X is a subtype of
 X|Y.

	
 Supertypes: if both X and
 Y are subtypes of Z,
 then X|Y is also a subtype of
 Z.

The following results follow from these rules:
	
 X|Nothing is the same type as X
 for any type X, and

	
 X|Anything is the same type as Anything
 for any type X.

Finally:
	If X<T> is covariant in the type parameter
 T, then X<U>|X<V> is a
 subtype of X<U|V> for any types U
 and V that satisfy the type constraints on T.

	If X<T> is contravariant in the type parameter
 T, then X<U>|X<V> is a
 subtype of X<U&V> for any types U
 and V that satisfy the type constraints on T.

Intersection types

For any types X and Y, the
 intersection, or conjunction,
 X&Y, of the types may be formed. An intersection type is a
 subtype of both of the given types X and Y,
 and any object which is an instance of both types is an instance of the intersection
 type.
Note: the type expression X&Y is pronounced
 “x and y”.

The intersection type constructor & is associative,
 so the intersection of three types, X, Y,
 and Z, may be written X&Y&Z.
IntersectionType: PrimaryType ("&" PrimaryType)*
The intersection X&Y inherits all members of both
 X and Y.
void store(Persistent&Printable&Identifiable storable) { ... }
Intersection types satisfy the following rules, for any types X,
 Y, and Z:
	
 Commutativity: X&Y is the same
 type as Y&X.

	
 Associativity: X&<Y&Z> is the same
 type as <X&Y>&Z, where the angle
 brackets denote grouping.

	
 Simplification: if X is a subtype
 of Y, then X&Y
 is the same type as X.

	
 Supertypes: X is a supertype of
 X&Y.

	
 Subtypes: if both X and
 Y are supertypes of Z,
 then X&Y is also a supertype of
 Z.

	
 Distributivity over union: X&<Y|Z> is the same
 type as <X&Y>|<X&Z>.

The following results follow from these rules:
	
 X&Nothing is the same type as Nothing
 for any type X, and

	
 X&Anything is the same type as X
 for any type X.

Finally:
	If X<T> is covariant in the type parameter
 T, then X<U>&X<V> is a
 supertype of X<U&V> for any types U
 and V that satisfy the type constraints on T.

	If X<T> is contravariant in the type parameter
 T, then X<U>&X<V> is a
 supertype of X<U|V> for any types U
 and V that satisfy the type constraints on T.

The bottom type

The special type Nothing, sometimes called the
 bottom type, represents:
	the intersection of all types, or, equivalently

	the empty set.

Nothing is assignable to all other types, but has
 no instances.
The type schema for Nothing is empty, that is, it
 is considered to have no members.
Nothing is considered to belong to the module
 ceylon.language. However, it cannot be defined within
 the language.
Note: an expression of type Nothing results
 in a compiler warning.

Because of the restrictions imposed by Ceylon's mixin inheritance
 model:
	If X and Y are classes, and
 X is not a subclass of Y, and
 Y is not a subclass of X, then
 the intersection type X&Y is equivalent to
 Nothing.

	If X is an interface, the intersection type
 X&Null is equivalent to Nothing.

	If X is an interface, and Y
 is a final class, and Y is not a
 subtype of X, then the intersection type
 X&Y is equivalent to Nothing.

	If X<T> is invariant in its type parameter
 T, and the distinct types A and
 B do not involve type parameters, then
 X<A>&X is equivalent to
 Nothing.

	If X is a subtype of a type A
 and Y is a subtype of a type B,
 where A and B are distinct cases
 of an enumerated type, then the intersection type X&Y
 is equivalent to Nothing.

Furthermore, as a special case,
	Sequence<E> is equivalent to
 Nothing if E is equivalent
 to Nothing, and

	Tuple<E,F,R> is equivalent to
 Nothing if any of E,
 F, or R is equivalent to
 Nothing.

Note: the soundness of these rules is guaranteed by the
 implementations of the sealed types Sequence
 and Tuple in the module ceylon.language.

Principal typing

An expression, as defined in Chapter 6, Expressions, occurring at a
 certain location, may be assignable to a type. In this case,
 every evaluation of the expression at runtime produces an instance of a class that
 is a subtype of the type, or results in a thrown exception, as defined in
 Chapter 8, Execution.
Given an expression occurring at a certain location, a type T
 is the principal type of the expression if, given any type
 U to which the expression is assignable, T
 is a subtype of U. Thus, the principal type is the "most precise"
 type for the expression. The type system guarantees that every expression has a
 principal type. Thus, we refer uniquely to the type of an expression,
 meaning its principal type at the location at which it occurs.

Type expressions

Function and value declarations usually declare a type, by specifying
 a type expression.
Type: UnionType | EntryType
Type expressions are formed by combining types using union, intersection,
 and type abbreviations.
Type expressions support grouping using angle brackets:
GroupedType: "<" Type ">"
Applied types are identified by the name of the type (a class, interface,
 type alias, or type parameter), together with a list of type arguments if the
 type declaration is generic.
TypeNameWithArguments: TypeName TypeArguments?
Type names are resolved to type declarations according to
 the section called “Unqualified reference resolution” and
 the section called “Qualified reference resolution”.
If the type is a class, interface, or type alias nested inside a containing
 class or interface, the type must be fully qualified by its containing types,
 except when used inside the body of a containing type.
BaseType: PackageQualifier? TypeNameWithArguments | GroupedType
QualifiedType: BaseType ("." TypeNameWithArguments)*
If a type declaration is generic, a type argument list must be specified.
 If a type declaration is not generic, no type argument list may be specified.
A base type may be qualified by the package keyword, allowing
 disambiguation of the type name, as defined in
 the section called “Unqualified reference resolution”.
PackageQualifier: "package" "."
Note: the name of a type may not be qualified by its package name.
 Alias imports, as defined in the section called “Alias imports” may be used to
 disambiguate type names.

BufferedReader.Buffer
Entry<Integer,Element>

Type abbreviations

Certain important types may be written using an abbreviated syntax.
PrimaryType: AtomicType | OptionalType | SequenceType | CallableType
AtomicType: QualifiedType | EmptyType | TupleType | IterableType
First, there are postfix-style abbreviations for optional types
 and sequence types.
OptionalType: PrimaryType "?"
SequenceType: PrimaryType "[" "]"
For any type X:
	X? means
 Null|X, and

	X[] means
 Sequential<X>.

Note: the type expression X? is pronounced
 as “maybe x”, and X[] as
 “sequence of x”.

Next, there are type abbreviations for callable types
 which represent the types of functions.
CallableType: PrimaryType "(" (TypeList? | SpreadType) ")"
TypeList: (DefaultedType ",")* (DefaultedType | VariadicType)
DefaultedType: Type "="?
VariadicType: UnionType ("*" | "+")
SpreadType: "*" UnionType
For any type X:
	X(Y,Z) means
 Callable<X,[Y,Z]> where
 Y,Z is a list of types of any length,
 and

	X(*Y) means
 Callable<X,Y> for any subtype
 Y of
 Sequential<Anything>.

More precisely, the type meant by a callable type abbreviation is
 Callable<X,T> where X is the
 type outside the parentheses in the the callable type abbreviation, and
 T is the tuple type formed by the types listed inside the
 parentheses.
Next, abbreviations for iterable types are written
 using braces.
IterableType: "{" UnionType ("*"|"+") "}"
For any type X:
	{X*} means
 Iterable<X,Null>, and

	{X+} means
 Iterable<X,Nothing>.

Note: the type expression {X*} is pronounced
 as “stream of x”, and {X+} as
 “nonempty stream of x”.

Next, abbreviations for sequence types and
 tuple types may be written using brackets.
EmptyType: "[" "]"
TupleType: "[" TypeList "]" | PrimaryType "[" DecimalLiteral "]"
	[] means Empty,

	[X] means Tuple<X,X,[]>
 for any type X,

	[X=] means []|[X]
 for any type X,

	[X*] means Sequential<X>
 for any type X,

	[X+] means Sequence<X>
 for any type X,

	[X,Y] means
 Tuple<X|Y,X,[Y]> for
 any types X,Y,

	[X,Y=] means
 Tuple<X|Y,X,[Y=]>
 for any types X,Y,

	[X,Y*] means
 Tuple<X|Y,X,[Y*]> for
 any types X,Y,

	[X,Y+] means
 Tuple<X|Y,X,[Y+]> for
 any types X,Y, and, finally,

	X[1] means [X],
 for any type X,
 and X[n] means
 Tuple<X,X,X[n-1]>
 for any type X and positive integer
 n.

More precisely:
	A tuple type abbreviation of form [X, ...]
 means the type Tuple<X|Y,X,T> where
 T is the type meant by the type abbreviation formed
 by removing the first element type X from the list of
 types in the original tuple type abbreviation, and T
 has the principal instantiation Y[], as defined in
 the section called “Principal instantiations and polymorphism”.

	A tuple type abbreviation of form [X=, ...]
 means the type Empty|T where T is the
 type meant by the tuple type abbreviation [X, ...],
 formed by removing the = from the first element type
 X= of the list of types in the original tuple type
 abbreviation.

In a tuple type or callable type expression:
	an defaulted element is indicated with a
 postfix = or *, and

	a required element is indicated with a
 postfix + or no special marker.

In a tuple type or callable type expression, every defaulted element must
 occur after every required element.
Finally, an entry type may be abbreviated using an
 arrow.
EntryType: UnionType "->" UnionType
	X->Y means Entry<X,Y>,
 for any types X, Y.

Note: the abbreviations T[] and
 [T*] are synonyms. The syntax T[] is
 supported for reasons of nostalgia.

Abbreviations may be combined:
String?[] words = { "hello", "world", null };
String? firstWord = words[0];

String->[Integer,Integer] onetwo = "onetwo"->[1, 2];

[Float+](Float x, Float[] xs) add = (Float x, Float[] xs) => [x, *xs];
When a type appears in a value expression, these abbreviations cannot be used
 (they cannot be disambiguated from operator expressions).

Type inference

Certain declarations which usually require an explicit type may omit the type,
 forcing the compiler to infer it, by specifying the keyword value,
 as defined in the section called “Value type inference”, or function,
 as defined in the section called “Function return type inference”, where the type usually appears.
value names = people*.name;
function parse(String text) => text.split(" .!?,:;()\n\f\r\t".contains);
Type inference is only allowed for declarations which are referred to only by
 statements and declarations that occur within the lexical scope of the declaration,
 as specified by the section called “Type inference and block structure”. A
 value or function declaration may not:
	be annotated shared, as defined in
 the section called “Visibility”,

	occur as a toplevel declaration in a compilation unit, as
 defined in the section called “Toplevel and nested declarations”, or

	be referred to by statements or declarations that occur earlier in
 the body containing of the declaration, as defined in
 the section called “Block structure and references”.

Nor may a parameter or forward-declared value, as defined in
 the section called “Forward declaration of values”, or of a forward-declared function, as
 defined in the section called “Forward declaration of functions”, have an inferred type.
These restrictions allow the compiler to infer undeclared types in a single
 pass of the code.
Note: in future releases of the language, the inferred type will
 be context-dependent, that is, in program elements immediately following an
 assignment or specification, the inferred type will be the type just assigned.
 When conditional execution results in definite assignment, the inferred type
 will be the union of the conditionally assigned types. This will allow us to to
 relax the restriction that forward-declared functions and values can't have their
 type inferred. For example:

 value one;
if (float) {
 one = 1.0;
 Float float = one;
}
else {
 one = 1;
 Integer int = one;
}
Float|Integer num = one;

An inferred type never involves an anonymous class, as defined in
 the section called “Anonymous classes”. When an inferred type would involve an
 anonymous class type, the anonymous class is replaced by the intersection
 of the class type it extends with all interface types it satisfies.
TODO: properly define how expressions with no type occurring
 in a dynamic block affect type inference.

Type alias elimination

A type alias is a synonym for another type. A
 generic type alias is a type constructor that produces a type alias, given
 a list of type arguments.
Every type alias must be reducible to an equivalent type that does
 not involve any type aliases by recursive replacement of type aliases with
 the types they alias. Thus, circular type alias definitions, as in the
 following example, are illegal:
alias X => List<Y>; //error: circular type alias definition
alias Y => List<X>; //error: circular type alias definition
Replacement of type aliases with the types they alias occurs at
 compile time, so type aliases are not reified types, as specified in
 the section called “Type argument reification”.

Inheritance

Inheritance is a static relationship between classes, interfaces, and type
 parameters:
	a class may extend another class, as defined
 by the section called “Class inheritance”,

	a class may satisfy one or more interfaces,
 as defined by the section called “Class inheritance”,

	an interface may satisfy one or more other
 interfaces, as defined by the section called “Interface inheritance”, or

	a type parameter may satisfy a class and/or
 one or more interfaces or type parameters, as defined by
 the section called “Generic type constraints”.

We say that a type declaration X inherits
 a type declaration Y if X extends or satisfies
 Y, or if a third type declaration Z inherits
 Y and X extends or satisfies Z.
Inheritance relationships may not produce cycles, since that would violate
 the noncircularity rule for subtyping. Thus, a class, interface, or type parameter
 may not, directly or indirectly, inherit itself.
When a type declaration extends or satisfies a parameterized type declaration,
 it must specify type arguments for the type parameters of the generic declaration.
 Thus, whenever a type declaration inherits a parameterized type declaration, it also
 inherits an instantiation of the parameterized type declaration.

 Note: when a type declaration specifies a relationship to other types, Ceylon
 visually distinguishes between a list of types which conceptually represents a
 combination of (intersection of) the types, and a list of types which represents a
 choice between (union of) the types. For example, when a class C
 satisfies multiple interfaces, they are written as X&Y&Z.
 On the other hand, the cases of an enumerated class E are written
 as X|Y|Z. This syntax emphasizes that C is also
 a subtype of the intersection type X&Y&Z, and that
 E may be narrowed to the union type X|Y|Z using
 a switch statement or the of operator.

Inheritance and subtyping

Inheritance relationships between classes, interfaces, and type parameters
 result in subtyping relationships between types.
	If a type declaration X with no type parameters
 inherits a type Y, then X is a subtype
 of Y.

	If a generic type X inherits a type Y,
 which might involve the type parameters of X, then for any
 instantiation U of X we can construct
 a type V by, for every type parameter T
 of X, substituting the corresponding type argument of
 T given in U everywhere T
 occurs in Y, and then U is a subtype of
 V.

Extension

A class may extend another class, in which case the first class is a
 subtype of the second class and inherits its members. A class which extends
 another class may have a constructor, as defined in the section called “Constructors”,
 which delegates to a callable constructor of the second class. Extension and
 constructor delegation is specified using the extends
 clause.
The extends clause must specify exactly one class
 or constructor.
ExtendedType: "extends" (Extension | Construction)
An extends clause of a class or constructor has
 either:
	a reference to a superclass, followed by an optional positional
 argument list, as defined in the section called “Positional argument lists”,
 or

	a reference to a superclass constructor, always followed by a
 positional argument list.

In the case that the extends clause refers to a
 constructor, the superclass is taken to be the class to which the constructor
 belongs.
Extension: (BaseExtension | SuperExtension) PositionalArguments?
Construction: (BaseConstruction | SuperConstruction) PositionalArguments
The extends clause may not refer to a partial
 constructor of the superclass, nor to a value constructor of the superclass.

BaseExtension: PackageQualifier? TypeNameWithArguments
SuperExtension: SuperQualifier TypeNameWithArguments
BaseConstruction: (PackageQualifier? TypeNameWithArguments ".")? MemberNameWithArguments
SuperConstruction: SuperQualifier MemberNameWithArguments
SuperQualifier: "super" "."
The specification of the superclass or superclass constructor is treated
 as a value expression, not as a type expression.
	If the qualifier super occurs, the
 specification is treated as a member expression, as defined by
 the section called “Member expressions”, where the qualifier
 super is treated according to
 the section called “super”.

	If a qualifying type occurs, the specification is treated
 as a constructor expression, as defined by
 the section called “Constructor expressions”.

	Otherwise, if no qualifier occurs, the specification is
 treated as a base expression, as defined by
 the section called “Base expressions”.

The type of the value expression is the inherited type.
The specification of the superclass or superclass constructor may have
 type arguments, and, additionally, the extends clause may have a positional
 argument list:
	If the superclass is a parameterized type, the extends
 clause must also explicitly specify type arguments, and the resulting
 applied type is inherited.

	If the extends clause belongs to a constructor or
 to a class with an initializer parameter list, the extends
 clause must specify arguments for the initializer parameters of the superclass
 or parameters of the superclass constructor.

	If the extends clause belongs to a class with no
 initializer parameter list, the extends clause may not
 specify arguments for the initializer parameters of the superclass, and the
 extends clause may not refer to a constructor.

The type arguments may not be inferred from the
 positional arguments.
A type argument occurring in the extends clause may not
 involve variance annotations in or out,
 defined below in the section called “Type arguments and variance”.
extends Singleton<String>("")
extends Person(name, org)
extends withName(name)
A member class annotated actual may use the qualifier
 super in the extends clause to refer to the
 member class it refines. When the qualifier super appears, the
 following class name refers to a member class of the superclass of the class that
 contains the member class annotated actual.
extends super.Buffer()
The root class Anything defined in
 ceylon.language does not have a superclass.

Satisfaction

The satisfies clause does double duty. It's used to
 specify that a class or interface is a direct subtype of one or more interfaces,
 and to specify upper bound type constraints applying to a type parameter.
Note: for this reason the keyword is not named
 "implements". It can't reasonably be said that a type
 parameter "implements" its upper bounds. Nor can it be reasonably said that
 an interface "implements" its super-interfaces.

	A class or interface may satisfy one or more interfaces, in which case
 the class or interface is a subtype of the satisfied interfaces, and inherits
 their members.

	A type parameter may satisfy one or more interfaces, optionally, a class,
 and optionally, another type parameter. In this case, the satisfied types are
 interpreted as upper bound type constraints on arguments to the type
 parameter.

Note: currently, a type parameter upper bound may not be specified
 in combination with other upper bounds. This restriction will likely be removed in
 future.

The satisfies clause may specify multiple types.
SatisfiedTypes: "satisfies" PrimaryType ("&" PrimaryType)*
If a satisfied class or interface is a parameterized type, the
 satisfies clause must explicitly specify type arguments, and
 the resulting applied type is inherited.
A type occurring in the satisfies clause may not involve
 variance annotations in or out, defined below
 in the section called “Type arguments and variance”.
satisfies Correspondence<Integer,Element> & Collection<Element>
A satisfies clause may not contain two instantiations of
 the same type declaration.

Case enumeration and coverage

Coverage is a static relationship between classes,
 interfaces, and type parameters, produced through the use of case
 enumeration:
	An abstract class or interface may be an
 enumerated type, with an enumerated list of
 disjoint subtypes called cases, as defined by
 the section called “Enumerated classes” and
 the section called “Enumerated interfaces”.

	A type parameter may have an enumerated bound,
 with an enumerated list possible type arguments, as defined by
 the section called “Generic type constraints”.

	An abstract class or interface may have a
 self type, a type parameter representing the
 concrete type of an instance.

Coverage

Coverage is a strictly weaker relationship than assignability:
	If a type is a subtype of a second type, then the second type
 covers the first type.

	If a type has a self type, then its self type covers the type.

	If a type X enumerates its cases
 X1, X2, etc, then the union
 X1|X2|... of its cases covers the type.

	If a generic type X enumerates its cases,
 X1, X2, etc, which might involve
 the type parameters of X, then for any instantiation
 U of X, and for each case
 Xi, we can construct a type Ui by,
 for every type parameter T of X,
 substituting the corresponding type argument of T
 given in U everywhere T occurs in
 Xi, and then the union type U1|U2|...
 of all the resulting types Ui covers
 Y.

	If a type X covers two types A
 and B, then X also covers their
 union A|B.

	If X and Y are both
 instantiations of a generic type G, and if the type
 Z is formed by replacing every covariant argument in
 Y with the intersection of the upper bounds of the
 corresponding type parameter of G, after substitution
 of the given type arguments in Y for any occurrences
 of the type parameters of G in the upper bounds, except
 where the argument is already a subtype of the upper bounds, then if
 X covers Z, then X
 also covers Y.

	Coverage is transitive. If X covers
 Y and Y covers Z,
 then X covers Z.

It follows that coverage obeys the identity property of assignability:
 a type covers itself. However, coverage does not obey the noncircularity property
 of assignability. It is possible to have distinct types A and
 B where A covers B and
 B covers A.
Case enumeration allows safe use of a type in a switch
 statement, or as the subject of the of operator. The compiler
 is able to statically validate that the switch contains an
 exhaustive list of all cases of the type, by checking that the union of cases
 enumerated in the switch covers the type, or that the second
 operand of of covers the type.

 Note: however, a type is not considered automatically
 assignable to the union of its cases, or to its self type. Instead, the type
 must be explicitly narrowed to the union of its cases, nor
 to its self type, using either the of operator or the
 switch construct. This narrowing type conversion can be
 statically checked—if X covers Y
 then Y of X is guaranteed to succeed at runtime. Unfortunately,
 and quite unintuitively, the compiler is not able to analyse coverage implicitly
 at the same time as assignability, because that results in undecidability!

Cases

The of clause does triple duty. It's used to define
 self types and type families, enumerated types, and enumerated type constraints.
 The of clause may specify multiple elements, called
 cases.
CaseTypes: "of" CaseType ("|" CaseType)*
CaseType: ValueCase | PrimaryType
ValueCase: ("package" ".")? MemberName
A type occurring in the of clause may not involve
 variance annotations in or out, defined
 below in the section called “Type arguments and variance”.
If an interface or abstract class with an
 of clause has exactly one case, and it is a type parameter
 of the interface or abstract class, or of the immediately
 containing type, if any, then that type parameter is a
 self type of the interface or abstract
 class, and:
	the self type parameter covers the declared type within the
 body of the declaration,

	the type argument to the self type parameter in an
 instantiation of the declared type covers the instantiation,
 and

	every type which extends or satisfies an instantiation of the
 declared type must also be covered by the type argument to the self
 type parameter in the instantiation.

shared abstract class Comparable<Other>() of Other
 given Other satisfies Comparable<Other> {

 shared formal Integer compare(Other that);

 shared Integer reverseCompare(Other that)
 => that.compare(this) of Other;

}
Comparable<Item> comp = ... ;
Item item = comp of Item;
Otherwise, an interface or abstract class with an
 of clause may have multiple cases, but each case must be
 either:
	a subtype of the interface or abstract
 class, or

	a value reference to a toplevel anonymous class, as defined
 in the section called “Anonymous classes”, that is a subtype of the
 interface or abstract class.

Then the interface or abstract class is an
 enumerated type, and every subtype of the interface
 or abstract class must be a subtype of exactly one of
 the enumerated subtypes. A class or interface may not be a subtype of more
 than one case of an enumerated type.
If a concrete class has an of clause, then each
 case must be a value reference to a value constructor of the class, as
 defined in the section called “Constructors”, and the class must be a toplevel
 class. Then the concrete class is an enumerated type, and there may be no
 additional non-partial constructors of the class that are not listed in the
 of clause.
of larger | smaller | equal
of Root<Element> | Leaf<Element> | Branch<Element>
A type parameter with an of clause may specify
 multiple cases, as defined in the section called “Generic type constraints”.
An of clause may not contain:
	two instantiations of the same type declaration, or

	two value references to the same toplevel anonymous class
 or value constructor.

Generic enumerated types

If a generic enumerated type X has a case type
 C, then C must directly extend or
 satisfy an instantiation Y of X, and
 for each type parameter T of X and
 corresponding argument A of T given
 in Y, either:
	X is covariant in T and
 A is exactly Nothing,

	X is contravariant in T
 and A is exactly the intersection of all upper
 bounds on T, or Anything if
 T has no upper bounds, or

	C is an instantiation of a generic type
 G and A is exactly
 S for some type parameter S
 of G, and S must have the same
 variance as T.

Furthermore, if C is an instantiation of a generic
 type, then T may not occur twice in C.

For example, the following covariant enumerated type is legal:
interface List<out Element>
 of Cons<Element> | nil { ... }

class Cons<out Element>(Element element)
 satisfies List<Element> { ... }

object nil
 satisfies List<Nothing> { ... }
As is the following contravariant enumerated type:
interface Consumer<in Event>
 of Logger | Handler<Event>
 given Event satisfies AbstractEvent { ... }

interface Logger
 satisfies Consumer<AbstractEvent> { ... }

interface Handler<in Event>
 satisfies Consumer<AbstractEvent>
 given Event satisfies AbstractEvent { ... }
But the following enumerated type is not legal, since it is possible
 to choose a legal argument T of the type parameter
 Type of Expression, such that the case
 types StringLiteral and NumberLiteral
 aren't subtypes of the instantiation Expression<T>:
interface Expression<out Type>
 of Function<Type> | StringLiteral | NumberLiteral { ... }

interface Function<out Type>
 satisfies Expression<Type> { ... }

interface StringLiteral
 satisfies Expression<String> { ... } //error String is not exactly Nothing

interface NumberLiteral
 satisfies Expression<Integer|Float> { ... } //error Integer|Float is not exactly Nothing
Note: these rules could be relaxed to allow the definition of
 generic enumerated types where the list of cases of an instantiation of a
 generic type depends upon the given type arguments (a "generalized" algebraic
 type).

Disjoint types

Two types are said to be disjoint if it is impossible
 to have a value that is an instance of both types. If X and
 Y are disjoint, then their intersection X&Y
 is the bottom type Nothing.
Two types X and Y are disjoint if
 either:
	X is a subtype of a type A
 and Y is a subtype of a type B,
 where A and B are distinct cases
 of an enumerated type,

	X and Y are both classes and
 X is not a subclass of Y and
 Y is not a subclass of X,

	X is the class Null and
 Y is an interface,

	X is an anonymous class or an instantiation
 of a final class and Y is an
 instantiation of a class of interface, and X
 does not inherit Y,

	X is an anonymous class or a final
 class with no type parameters and Y is a type in
 which no type parameter reference occurs, and X
 is not a suptype of Y,

	X is a type parameter and Y
 and the intersection of the upper bounds of X are
 disjoint,

	X is a union type A|B and
 both Y and A are disjoint and
 Y and B are disjoint,

	X is an enumerated type with cases
 A1|A2|... and for every case Ai
 of X, Y and Ai
 are disjoint,

	X is an intersection type A&B
 and either Y and A are disjoint or
 Y and B are disjoint, or

	X and Y inherit disjoint
 instantiations of a generic type Z, that is, two
 instantiations of Z that have the intersection
 Nothing, as defined below, in
 the section called “Principal instantiation inheritance”.

Furthermore, as a special case, the types X and
 Y are disjoint if:
	X is a subtype of some instantiation of
 Sequential, Y is an instantiation
 of a class or interface that is not a subtype of any instantiation of
 Sequential, and Y is not an
 instantiation of a class or interface that is inherited by
 Sequential,

	X has the principal supertype instantiation
 Sequence<A>,
 Y has the principal supertype instantiation
 Sequential,
 and A and B are disjoint,

	X has the principal supertype instantiation
 Sequential<A>,
 Y has the principal supertype instantiation
 Tuple<J,B,V>,
 and A and B are disjoint or
 Sequential<A> and V are
 disjoint, or

	X has the principal supertype instantiation
 Tuple<I,A,U>,
 Y has the principal supertype instantiation
 Tuple<J,B,V>,
 and A and B are disjoint
 or U and V are disjoint.

Note: the soundness of these rules is guaranteed by the
 implementations of the sealed types Sequence,
 Sequential, Range, and Tuple
 in the module ceylon.language.

Generic type parameters

A function, class, or interface schema may be parameterized by one or more
 generic type parameters. A parameterized type schema defines a type constructor,
 a function that produces a type given a tuple of compatible type arguments. A
 parameterized class or function schema defines a function that produces the
 signature of an invokable operation given a tuple of compatible type arguments.
TypeParameters: "<" (TypeParameter ",")* TypeParameter ">"
A declaration with type parameters is called generic or
 parameterized.
	A type schema with no type parameters defines exactly one type. A
 parameterized type schema defines a template for producing types: one type
 for each possible combination of type arguments that satisfy the type constraints
 specified by the type. The types of members of the this type are determined by
 replacing every appearance of each type parameter in the schema of the
 parameterized type definition with its type argument.

	A function schema with no type parameters defines exactly one operation
 per type. A parameterized function declaration defines a template for producing
 overloaded operations: one operation for each possible combination of type
 arguments that satisfy the type constraints specified by the method declaration.

	A class schema with no type parameters defines exactly one instantiation
 operation. A parameterized class schema defines a template for producing
 overloaded instantiation operations: one instantiation operation for each possible
 combination of type arguments that satisfy the type constraints specified by the
 class declaration. The type of the object produced by an instantiation operation is
 determined by substituting the same combination of type arguments for the type
 parameters of the parameterized class schema.

Note: by convention, type parameter names should be constructed from
 meaningful words. The use of single-letter type parameter names is discouraged. The
 name of a type parameter should be chosen so that declarations within the body of
 the parameterized declaration read naturally. For example,
 class Entry<Key,Item> is reasonable, since
 Key key and Item item read naturally within
 the body of the Entry class. The following identifier names
 usually refer to a type parameter: Element, Other,
 This, Value, Key,
 Item, Absent, Argument,
 Args and Result. Avoid, where reasonable, using
 these names for interfaces and classes.

Type parameters and variance

A type parameter allows a declaration to be abstracted
 over a constrained set of types.
TypeParameter: Variance TypeName ("=" Type)?
Every type parameter has a name and a variance.
Variance: ("out" | "in")?
	A covariant type parameter is indicated using the
 keyword out.

	A contravariant type parameter is indicated using
 the keyword in.

	By default, a type parameter is invariant.

A type parameter may, optionally, have a default type argument.
 A type parameter with a default type argument must occur after every type parameter
 with no default type argument in the type parameter list.
The default type argument for a type parameter must satisfy the constraints on
 the type parameter.
TODO: this restriction could be relaxed, and the assignability of the
 default type argument to the type constraints checked at use-sites where the default
 type argument is used in type expressions.

A default type argument expression for a type parameter of a generic declaration
 may not involve:
	the type parameter itself,

	any type parameter of the declaration that occurs later in the list
 of type parameters, nor

	the generic declaration.

Within the body of the schema it parameterizes, a type parameter is itself a
 type. The type parameter is a subtype of every upper bound of the type parameter.
 However, a class or interface may not extend or satisfy a type parameter.
<Key, out Item>
<in Message>
<out Element=Object>
<in Left, in Right, out Result>

Variance validation

A covariant type parameter may only appear in covariant positions
 of the parameterized schema. A contravariant type parameter may only appear in
 contravariant positions of the parameterized schema. An
 invariant type parameter may appear in any position.
Furthermore, a type with a contravariant type parameter may only appear in a
 covariant position in an extended type, satisfied type, case type, or upper bound
 type constraint.
Note: this restriction exists to eliminate certain undecidable cases
 described in the paper Taming Wildcards in Java's Type System, by Tate et al.

To determine if a type expression occurs in a covariant or contravariant
 position, we first consider how the type occurs syntactically.
For a generic function we examine the return type of the function, which
 is a covariant position.
For a generic type schema we examine each shared
 member, along with extended/satisfied types and case types.
Note: since the visibility rules are purely lexical in nature, it is
 legal for a member expression occurring in the body of a class or interface to have
 a receiver expression other that is not a self-reference, as defined in
 the section called “Self references”, and refer to an un-shared member
 of the class or interface. In this special case, the member is treated as if it were
 shared for the purposes of the following variance validation
 rules.

	An extended type, satisfied type, or case type of the type schema
 itself is a covariant position.

In a shared method declaration of the parameterized
 type schema:
	The return type of the method is a covariant position.

	Any parameter type of the method is a contravariant position.

	Any upper bound or enumerated bound of a type parameter of the
 method is a contravariant position.

In a shared attribute declaration that is
 neither variable nor late:
	The type of the attribute is a covariant position.

In a shared reference declaration that is
 either variable or late:
	The type of the attribute is an invariant position.

In a shared nested class declaration of the
 parameterized type schema:
	Any initializer parameter type of the class is a contravariant
 position.

	Any callable constructor parameter type of the class is an
 invariant position of the class itself, but a contravariant position of
 any outer containing type.

	Any upper bound or enumerated bound of a type parameter of the
 class is a contravariant position.

	An extended type, satisfied type, or case type of the nested class
 is a covariant position.

	Every covariant position of the nested class schema is a covariant
 position of the containing type schema. Every contravariant position of
 the nested class schema is a contravariant position of the containing type
 schema.

In a shared nested interface declaration of the
 parameterized type schema:
	An extended type, satisfied type, or case type of the nested interface
 is a covariant position.

	Every covariant position of the nested interface schema is a covariant
 position of the containing type schema. Every contravariant position of
 the nested interface schema is a contravariant position of the containing
 type schema.

For parameters of callable parameters, we first determine if the callable
 parameter itself is covariant or contravariant:
	A callable parameter of a method or nested class is contravariant.

	A callable parameter of a covariant parameter is contravariant.

	A callable parameter of a contravariant parameter is covariant.

Then:
	The return type of a covariant callable parameter is a covariant
 position.

	The return type of a contravariant callable parameter is a
 contravariant position.

	The type of a parameter of a covariant callable parameter is a
 contravariant position.

	The type of a parameter of a contravariant callable parameter is a
 covariant position.

Finally, to determine if a type parameter that occurs as a type argument occurs
 in a covariant or contravariant position, we must consider the declared variance
 of the corresponding type parameter:
	A type argument of a covariant type parameter of a type in a covariant
 position is a covariant position.

	A type argument of a contravariant type parameter of a type in a
 covariant position is a contravariant position.

	A type argument of a covariant type parameter of a type in a
 contravariant position is a contravariant position.

	A type argument of a contravariant type parameter of a type in a
 contravariant position is a covariant position.

	A type argument of an invariant type parameter of a type in any position
 is an invariant position.

	A type argument of any type parameter of a type in an invariant position
 is an invariant position.

Generic type constraints

A parameterized method, class, or interface declaration may declare constraints
 upon ordinary type parameters using the given clause.
TypeConstraints: TypeConstraint+
There may be at most one given clause per type parameter.
TypeConstraint: "given" TypeName TypeConstraintInheritance
TypeConstraintInheritance: CaseTypes? SatisfiedTypes?

 Note that the syntax for a type constraint is essentially the same syntax
 used for other type declarations such as class and interface declarations.

There are two different kinds of type constraint:
	An upper bound, given X satisfies T,
 specifies that the type parameter X is a subtype of
 a given type T.

	An enumerated bound, given X of T|U|V
 specifies that the type parameter X represents one
 of the enumerated types.

The types listed in an enumerated bound must be mutually disjoint, and each
 type must be a class or interface type.
TODO: Should we allow unions in upper bounds? Should we allow
 intersections in enumerated bounds?

A single given clause may specify multiple constraints on
 a certain type parameter. In particular, it may specify multiple upper bounds
 together with an enumerated bound. If multiple upper bounds are specified, at most
 one upper bound may be a class, and at most one upper bound may be a type parameter.
Note: in Ceylon 1.0, a type parameter with multiple upper bounds may
 not have an upper bound which is another type parameter.

given Value satisfies Ordinal<Value> & Comparable<Value>
given Argument of String | Integer | Float
A type parameter is a subtype of its upper bounds.
class Holder<Value>(shared Value element)
 extends Object()
 given Value satisfies Object {
 shared actual Boolean equals(Object that) {
 return if (is Holder<Value> that
 then element==that.element
 else false;
 }
 shared actual Integer hash => element.hash;
}
Every type parameter has an implicit upper bound of type
 Anything.
TODO: eventually, we would like to have Ceylon's system of
 flow-sensitive typing support a special sort ofswitch
 over the cases of a type parameter with an enumerated bound:

 Characters uppercase<Characters>(Characters chars)
 given Characters of String | Range<Character> {
 switch (Characters)
 case (satisfies String) {
 return chars.uppercased;
 }
 case (satisfies Range<Character>) {
 return chars.first.uppercased..chars.last.uppercased;
 }
}

Note: we have often searched for a need for lower bound type constraints.
 The syntax would be:
given T abstracts One|Two

 With union types they don't appear to be very useful, since it seems that
 almost every operation with a lower bound can be rewritten in a more general form
 using a union type. However, perhaps lower bounds will someday turn out to be useful
 when combined with contravariant types. (A lower bound on a parameter which occurs
 as the argument of a contravariant type is more like an upper bound).

Note: since we have reified types, it would be possible to support
 a type constraint that allows instantiation of the type parameter.

 given T(Object arg)

 The problem with this is that then inferring T is fragile.
 And if we don't let it be inferred, we may as well pass T as an
 ordinary parameter. So Ceylon, unlike C#, doesn't support this.

Generic type arguments

A list of type arguments produces a new type schema
 from a parameterized type schema, or a new function schema from a from a
 parameterized function schema. In the case of a type schema, this new schema is
 the schema of an applied type, and is called an instantiation of the parameterized
 type schema.
A type argument list is a list of type arguments.
TypeArguments: "<" ((TypeArgument ",")* TypeArgument)? ">"
A type argument is a type with a variance.
TypeArgument: Variance Type
A type argument may itself be an applied type, or type parameter, or may
 involve unions and intersections.
<Key, List<Item>>
<String, Person?>
<String[](Integer), [{Object*}]>
<out Object, in Nothing>
Type arguments are assigned to type parameters according to the positions
 they occur in the list.
Type arguments and variance

Every type argument has a variance:
	if the type argument is annotated out
 then it must be assigned to an invariant type parameter, and
 it is covariant,

	if the type argument is annotated in
 then it must be assigned to an invariant type parameter, and
 it is contravariant, or,

	otherwise, the type argument has the same variance
 as the type parameter to which it is assigned.

It is illegal for both the type parameter and its type argument
 to have an explicit variance.

Type argument substitution

Given the schema of a generic declaration, we form the new schema by
 type argument substitution. Each type argument is
 substituted for every appearance of the corresponding type parameter in the
 schema of the generic declaration, including:
	attribute types,

	function or method return types,

	function or method parameter types,

	class initializer and callable constructor parameter types,
 and

	type arguments of extended classes and satisfied interfaces.

When a type argument A with no explicit variance
 annotation is substituted for a type parameter T, all
 occurrences of T in the schema of the generic declaration
 are replaced with A.
For type arguments with explicit variance of a type parameter
 T, substitution of the type argument depends upon whether
 an occurrence of T is a covariant or contravariant position
 in the schema of the generic declaration, as defined above in
 the section called “Variance validation”.
When a type argument out A explicitly marked
 covariant is substituted for a type parameter T:
	Every occurrence of T in a covariant position
 as a type argument of an invariant type parameter is replaced by
 out A.

	Every other occurrence of T in a covariant
 position is replaced by A.

	Every occurrence of T in a contravariant
 position is replaced by Nothing.

	Every applied type expression E involving
 A, and occurring as a type argument of an
 invariant type parameter, and which was replaced by F
 according to the previous rules is replaced by out F.

When a type argument in A explicitly marked
 contravariant is substituted for a type parameter T:
	Every occurrence of T in a contravariant
 position as a type argument of an invariant type parameter is
 replaced by in A.

	Every other occurrence of T in a
 contravariant position is replaced by A.

	Every occurrence of T in a covariant
 position is replaced by the intersection of the upper bound type
 constraints on T in which T
 itself does not occur covariantly, or by Anything
 if there are no such constraints.

	Every applied type expression E involving
 A, and occurring as a type argument of an
 invariant type parameter, and which was replaced by F
 according to the previous rules is replaced by out F.

Type arguments and type constraints

A generic type constraint affects the type arguments that can be assigned
 to a type parameter in any type argument list belonging directly to:
	a base expression or member expression

	an applied type expression that occurs directly in a
 satisfies, of, or
 extends clause, or

	a metamodel expression, as defined by
 the section called “Metamodel expressions”.

A type constraint does not apply to any type
 argument list belonging to an applied type expression that occurs:
	outside of the satisfies, of,
 and extends clauses, or

	as a type argument within these clauses.

In locations where type constraints apply:
	A type argument to a type parameter T with an
 upper bound must be a type which is a subtype of all upper bounds of
 T in the realization of the generic declaration, as
 defined in the section called “Realizations”.

	A type argument to a type parameter T with an
 enumerated bound must be a subtype of one of the enumerated types of the
 bound on T in the realization of the generic declaration,
 or it must be a type parameter A with an enumerated bound
 where every enumerated type of the bound on A is a subtype
 of one of the enumerated types of the bound on T in the
 realization of the generic declaration.

A type argument list conforms to a type parameter list
 if, for every type parameter in the list, either:
	there is a type argument to the type parameter, and either the type
 argument satisfies the constraints of the type parameter, or the type
 argument list occurs in a location where type constraints do not apply,
 or, alternatively,

	there is no explicit type argument but the type parameter has a
 default type argument, in which case the type argument is defaulted by
 substituting the arguments of all type parameters that occur earlier in
 the list of type parameters of the declaration into this default type
 argument.

There must be at least as many type parameters as type arguments. There must
 be at least as many type arguments as type parameters without default values.

Applied types and and variance

If a type argument list conforms to a type parameter list, the combination
 of the parameterized type together with the type argument list is itself a type,
 called an applied type. We also call the applied type an
 instantiation of the generic type.
For a generic type X, the instantiations Y
 and Z of X represent the same type if and
 only if for every type parameter P of X and
 corresponding type arguments A in Y and
 B in Z:
	A is exactly the same type as B,
		 and the variance of A is the same as B,
		

	A and B are both covariant type
 arguments, and both types are supertypes of P,

	either A or B is a contravariant
 type argument with type precisely Nothing, and the other
 type argument is covariant and its type is a supertype of P,

	both A and B have type precisely
 Nothing, and one is an invariant type argument, and the
 other is a covariant type argument, or

	both A and B have types which
 are supertypes of P, and one is an invariant type argument,
 and the other is an contravariant type argument.

For a generic type G, and instantiations
 Y and Z of G,
 Y is a subtype of Z if and only if,
 for every type parameter T of G, and
 corresponding arguments A specified in Y
 and B specified in Z:
	
 B is a covariant type argument, and
 T is a subtype of B,

	
 B is a contravariant type argument,
 and the type B is precisely
 Nothing,

	
 B is a covariant type argument, and
 A is not contravariant, and the type
 A is a subtype of the type
 B,

	
 B is a contravariant type argument, and
 A is not covariant, and the type
 B is a subtype of the type
 A,

	
 B is an invariant type argument,
 A is a covariant type argument, and
 T is a subtype of both types, or

	
 B is an invariant type argument,
 A is a contravariant type argument, and
 both types are precisely Nothing,

	
 B and A are both
 invariant type arguments (neither covariant nor contravariant),
 and A and B are exactly
 the same type.

Note that if A is an invariant type
 argument in the instantiation X<A> of a generic type
 X<T>, then a type Z is a subtype
 of X<A> if and only if Z has the
 principal instantiation X<A>.

Type argument inference

When a direct invocation expression, as defined by
 the section called “Invocation expressions”, does not explicitly specify type
 arguments, the type arguments are inferred from the argument expression types.
	In the case of a direct invocation of a function or class, type
 arguments are inferred for the type parameters of the function or
 class.

	In the case of a direct invocation of a callable constructor,
 type arguments are inferred for the type parameters of the class to
 which the constructor belongs.

The types of the argument expressions and the declared types of the
 corresponding parameters determine an inferred lower bound
 or inferred upper bound for each type parameter.
If a list of argument expressions has types A1,A2,...
 and the corresponding list of parameters has declared types P1,P2,...
 then:
	The inferred lower bound for a type parameter T
 of the generic declaration is the conjunction of all inferred lower bounds
 Ai on Pi for T.

	The inferred upper bound for a type parameter T
 of the generic declaration is the conjunction of all inferred upper bounds
 Ai on Pi for T.

Given types A and P, we determine the
 inferred lower bound A on P
 for T according to the nature of A and
 P:
	If P is exactly T, and
 the location at which P occurs in the parameter
 list is not a contravariant location, the inferred lower bound
 A on P for T
 is T abstracts A.

	If P is a union type Q|R,
 the lower bound A on P for
 T is the disjunction of the lower bound
 A on Q for T
 with the lower bound A on R
 for T. Note: this case is special.

	If P is an intersection type Q&R,
 the lower bound A on P for
 T is the conjunction of the lower bound
 A on Q for T
 with the lower bound A on R
 for T.

	If A is a union type B|C,
 the lower bound A on P for
 T is the conjunction of the lower bound B
 on P for T with the lower bound
 C on P for T.

	If A is an intersection type B&C,
 the lower bound A on P for
 T is the disjunction of the lower bound B
 on P for T with the lower bound
 C on P for T.

	If P is an applied type Q<P1,P2,...>
 of a parameterized type Q, and A
 is a subtype of an applied type Q<A1,A2,..>,
 the lower bound A on P for
 T is the conjunction of all lower bounds Ai
 on Pi for T.

	Otherwise, if A is not a union or intersection,
 and if P is neither an applied type, a union, or an
 intersection, nor exactly T, the lower bound
 A on P for T
 is null.

Where:
	the conjunction of a lower bound T abstracts A
 with a lower bound T abstracts B is the lower bound
 T abstracts A|B,

	the disjunction of a lower bound T abstracts A
 with a lower bound T abstracts B is the lower bound
 T abstracts A&B,

	the conjunction or disjunction of a lower bound T abstracts A
 with a null lower bound is T abstracts A, and

	the conjunction or disjunction of two null lower bounds is null.

Given types A and P, we determine
 the inferred upper bound A on
 P for T according to the nature of
 A and P:
	If P is exactly T, and
 the location at which P occurs in the parameter
 list is not a covariant location, the inferred upper bound
 A on P for T
 is T satisfies A.

	If P is a union type Q|R,
 the upper bound A on P for
 T is the disjunction of the upper bound
 A on Q for T
 with the upper bound A on R
 for T. Note: this case is special.

	If P is an intersection type Q&R,
 the upper bound A on P for
 T is the conjunction of the upper bound
 A on Q for T
 with the upper bound A on R
 for T.

	If A is a union type B|C,
 the upper bound A on P for
 T is the disjunction of the upper bound B
 on P for T with the upper bound
 C on P for T.

	If A is an intersection type B&C,
 the upper bound A on P for
 T is the conjunction of the upper bound B
 on P for T with the upper bound
 C on P for T.

	If P is an applied type Q<P1,P2,...>
 of a parameterized type Q, and A
 is a subtype of an applied type Q<A1,A2,..>,
 the upper bound A on P for
 T is the conjunction of all upper bounds Ai
 on Pi for T.

	Otherwise, if A is not a union or intersection,
 and if P is neither an applied type, a union, or an
 intersection, nor exactly T, the upper bound
 A on P for T
 is null.

Where:
	the conjunction of an upper bound T satisfies A
 with an upper bound T satisfies B is the upper bound
 T satisfies A&B,

	the disjunction of an upper bound T satisfies A
 with an upper bound T satisfies B is the upper bound
 T satisfies A|B,

	the conjunction or disjunction of an upper bound T satisfies A
 with a null upper bound is T satisfies A, and

	the conjunction or disjunction of two null upper bounds is null.

The inferred type argument to a covariant type parameter
 T of the generic declaration is:
	Nothing, if the inferred lower bound for
 T is null, or, otherwise,

	the type A, where the inferred lower bound for
 T is T abstracts A.

The inferred type argument to a contravariant type parameter
 T of the generic declaration is:
	Anything, if the inferred upper bound for
 T is null, or, otherwise,

	the type A, where the inferred upper bound for
 T is T satisfies A.

An invariant type parameter T of the generic
 declaration is treated, for the purposes of type argument inference, as if it
 were covariant or contravariant, depending upon how it occurs in the types of
 parameters explicitly assigned arguments by the direct invocation, and, in the
 case of direct invocation of a generic function or class alias, upon how it
 occurs in the return type of the function or aliased type of the class alias.
	If the generic declaration is a function or class alias, and
 T occurs covariantly in its return type or aliased
 type, and does not occur contravariantly or invariantly in its return
 type or aliased type, then T is treated as
 covariant.

	If the generic declaration is a function or class alias, and
 T occurs contravariantly in its return type or
 aliased type, and does not occur covariantly or invariantly in its
 return type or aliased type, then T is treated as
 contravariant.

	Otherwise, if T occurs contravariantly in the
 type of any parameter to which an argument is explicity assigned by the
 argument list of the direct invocation, and does not occur covariantly
 or invariantly in the type of any parameter to which an argument is
 explicitly assigned, then T is treated as
 contravariant.

	Finally, if none of the above cases apply, T is
 treated as covariant.

An argument expression with no type occurring in a dynamic
 block, as defined in the section called “Dynamic blocks”, may cause type argument inference
 to fail. When combining bounds using union, any constituent bound with no type results
 in a bound with no type. When combining bounds using intersection, any constituent
 bound with no type is eliminated. If the resulting inferred upper or lower bound has no
 type, type argument inference is impossible for the type argument, and type arguments
 must be specified explicitly.
Finally, when every type parameter Pi has been assigned an
 inferred type argument Ai, each inferred type argument is adjusted
 according to the upper bound type constraints on Pi. The final
 inferred type argument is the intersection of Ai with every type
 Vj formed by substituting all Ais for their
 corresponding Pis in an upper bound Uj of
 Pi.
If the inferred type argument does not satisfy the generic type
 constraints on T, a compilation error results.
Consider the following invocation:
[Element+] prepend<Element>(Element head, Element[] sequence) { ... }
value result = prepend(null, {"hello", "world"});
The inferred type of Element is the union type
 String?.
Now consider:
class Bag<out Element>(Element* elements) {
 shared Bag<ExtraElement> with<ExtraElement>(ExtraElement* elements)
 given ExtraElement abstracts Element { ... }
}
Bag<String> bag = Bag("hello", "world");
value biggerBag = bag.with(1, 2, 5.0);
The inferred type of ExtraElement is the union
 type Integer|Float|String.
Finally consider:
interface Delegate<in Value> { ... }
class Consumer<in Value>(Delegate<Value>* delegates) { ... }
Delegate<String> delegate1 = ... ;
Delegate<Object> delegate2 = ... ;
value consumer = Consumer(delegate1, delegate2);
The inferred type of Value is
 Consumer<String>.
TODO: What about upper bounds in which the type parameter
 itself appears (the infamous self-type problem with
 Comparable and Numeric) or in which
 another type parameter appears?

An inferred type argument never involves an anonymous class, as defined
 in the section called “Anonymous classes”. When an inferred type would involve an
 anonymous class type, the anonymous class is replaced by the intersection
 of the class type it extends with all interface types it satisfies.

Principal instantiations and polymorphism

Inheritance interacts with type parameterization to produce subtyping
 relationships between instantiations of generic types. The notion of an
 inherited instantiation and the notion of a
 principal instantation help us reason about these
 relationships.
Warning: this section is not for the faint of heart. Feel
 free to skip to Chapter 4, Declarations, unless you're really, really
 interested in precisely how the compiler reasons about inheritance of generic
 types.

Inherited instantiations

For a generic type G, inheritance produces subtypes
 with inherited instantiations of the generic type.
	If a type X directly extends or satisfies an
 instantiation V of G, then
 X has the inherited instantiation V
 of G.

	If a generic type H extends or satisfies an
 instantiation V of G, that may
 involve the type parameters of H, then for any
 instantiation U of H, we can
 construct an instantiation W of G
 by, for every type parameter T of H,
 substituting the type argument of T given in
 U everywhere T occurs in
 V, and then U has the inherited
 instantiation W of G.

	If a type X is a subtype of a type
 Y, and Y has an inherited
 instantiation W of a generic type G,
 then X also has this inherited instantiation.

Type argument distinctness

A pair of type arguments A and B
 are considered:
	provably distinct, if neither
 A nor B involves a type
 parameter and either:
	both arguments are invariant, and are not
 exactly the same type,

	one argument is covariant and the other argument
 is invariant and is not a subtype of the covariant
 argument, or

	one argument is contravariant and the other
 argument is invariant and is not a supertype of the
 contravariant argument,

	provably not distinct, if either:
	both arguments are invariant, and are exactly
 the same type,

	both arguments are covariant,

	both arguments are contravariant,

	one argument is covariant and the other argument
 is invariant and is a subtype of the covariant
 argument, or

	one argument is contravariant and the other
 argument is invariant and is a supertype of the
 contravariant argument,

	otherwise, possibly distinct, if
 either A or B involves a
 type parameter and A and B
 are not provably not distinct, or if A and
 B have opposite variances.

Note: the unfortunate case of possible distinctness is an
 incompleteness in the type system arising from the fact that Ceylon does
 not currently allow a type argument with both an upper and a lower bound,
 that is, a type argument of form in X out Y.

Principal instantiation inheritance

If a class or interface type X has the inherited
 instantiations V and W of some
 generic type Y, then:
	for every invariant type parameter T of
 Y, the type argument A of
 T given in V and the type
 argument B of T given in
 W must be exactly the same type, and,
 furthermore,

	X is a subtype of an instantiation
 U of Y such that
 U is a subtype of
 V&W.

Therefore, if a type X is a subtype of the
 instantiations V and W of some generic
 type Y, then either:
	for some invariant type parameter T of
 Y, the argument A of
 T given in V and the argument
 B of T given in
 W are provably distinct type arguments, and then
 the type V&W is the bottom type
 Nothing, and we say that V and
 W are disjoint instantiations
 of Y, or

	for some invariant type parameter T of
 Y, the argument of A of
 T given in V and the argument
 B of T given in
 W are possibly distinct, and then we say that
 V and W are
 irreconcilable instantiations
 of Y, or

	otherwise, X must be a subtype of an
 instantiation P of Y formed
 by taking each type parameter T of
 Y, and constructing a type argument
 C for T from the type
 arguments A of T given in
 V and B of T
 given in W:
	if A and B are
 both invariant, then they must be exactly the same type,
 and C is the same type as
 A and B,

	if both A and B
 are covariant, then C is
 out A&B

	if both A and B
 are contravariant, then C is
 in A|B,

	if either A or B
 is covariant and the other is invariant, with exact type
 D, then C is just
 D, or

	if either A or B
 is contravariant, and the other is invariant, with exact type
 D, then C is just
 D.

Finally, the following identities result from principal instantiation
 inheritance. For any generic type X<T>, and for any given
 types A and B:
	X<A>&X is exactly equivalent
 to X<A&B> if X<T>
 is covariant in T, unless either A
 or B involves type parameters, and

	X<A>&X is exactly equivalent
 to X<A|B> if X<T> is
 contravariant in T, unless either A
 or B involves type parameters.

Principal instantiation of a supertype

If a type X is a subtype of some instantiation
 V of a generic type Y, then, as a
 result of the principal instantiation inheritance restriction, we can
 form a unique instantiation of Y that is a subtype of
 every instantiation of Y to which X
 is assignable. We call this type the principal instantiation of
 Y for X.
We compute principal instantiations by making use of the identities
 observed above in the section called “Union types”, the section called “Intersection types”,
 and the section called “Principal instantiation inheritance”.
 For any generic type X:
	The principal instantiation of the union U|V
 of two instantiations of X, U
 and V, is an instantiation P
 of X formed by taking each type parameter
 T of X and constructing a
 type argument C for T from
 the type arguments A of T
 given in U and B of
 T given in V:
	if either A or B
 is covariant, and neither is contravariant, then
 C is the covariant type argument
 out A|B,

	if either A or B
 is contravariant, and neither is covariant, then
 C is the contravariant type argument
 in A&B, or

	if both A and B
 are invariant, and if A and
 B are exactly the same type, then
 C is this type.

	The principal instantiation of the intersection U&V
 of two instantiations of X, U
 and V, is an instantiation P of
 X formed by taking each type parameter
 T of X and constructing a
 type argument C for T from
 the type arguments A of T
 given in U and B of
 T given in V:
	if either A or B
 is covariant, and neither is contravariant, then
 C is the covariant type argument
 out A&B,

	if either A or B
 is contravariant, and neither is covariant, then
 C is the contravariant type argument
 in A|B,
 or

	if both A and B
 are invariant, and if A and
 B are exactly the same type, then
 C is this type.

	Finally, the principal instantiation of a generic type X
 for a type Y which has one or more inherited instantiations
 of X is the principal instantiation of the intersection of
 all the inherited instantiations of X.

Note: since we do not support type arguments with both upper
 and lower bounds, there are two cases where we cannot form a principal
 instantiation for an intersection type.

 	Intersections such as X<in A> & X<out B>,
 where the principal instantiation would be X<in A out B>.

	An intersection X<A> & X<P>
 of two instantiations of an invariant type, X<T> where
 one type argument P is a type parameter. The principal
 instantiation should be X<in A|P out A&P>.

 In these cases we simply disallow references to members of the intersection
 type.

Refinement

A class or interface may declare an actual member
 with the same name as a member that it inherits from a supertype if the supertype
 member is declared formal or default.
 Then we say that the first member refines the second
 member, and it must obey restrictions defined in
 the section called “Member class refinement”, the section called “Method refinement”, or
 the section called “Attribute refinement”.
A declaration may not be annotated both formal
 and default.
If a declaration is annotated formal,
 default, or actual then it must
 also be annotated shared.
For any class or interface X, and for every declared
 or inherited member of X that is not refined by some other
 declared or inherited member of X, and for every other member
 declared or inherited by X that directly or indirectly refines
 a declaration that the first member itself directly or indirectly refines, the
 principal instantiation for X of the type that declares the
 first member must be a subtype of the principal instantiation for X
 of the type that declares the second member.
Note: a related restriction is defined in
 the section called “Declaration name uniqueness”.

Qualified types

A type declaration that directly occurs in the body of another type
 is called a nested type. If a nested type is annotated
 shared, it may be used in a type expression outside the
 body in which it is declared, if and only if it occurs as a
 qualified type, as specified in
 the section called “Type expressions”.
The qualified types X.U and Y.V
 are exactly the same types if and only if U is exactly
 the same type as V, and in the case that this type is
 a member of a generic type Z, then the principal
 instantiation of Z for X is exactly
 the same type as the principal instantiation of Z for
 Y.
A qualified type X.U is a subtype of a qualified
 type Y.V if U is a subtype of
 V, and in the case that V is a member
 of a generic type Z, then X is a
 subtype of the principal instantiation of Z for
 Y.

Realizations

Given a member declared by Y, and a declaration that
 refines it, we can construct a refined realization of
 the member or nested type:
	first determine the principal instantiation of Y
 for the class or interface which refines the member, and then

	substitute the type arguments in this principal instantiation
 into the member schema.

Given an unqualified reference, as defined in
 the section called “Unqualified reference resolution”, to a declaration, and, in
 the case of a generic declaration, a list of type arguments for the type
 parameters of the declaration, we can construct an unqualified
 realization of the declaration:
	if the declaration is a member declared by a type
 Y, first determine the principal instantiation
 of Y for the inheriting or declaring class or
 interface, and then

	again, only if the declaration is a member declared by a
 type, substitute the type arguments in this principal
 instantiation into the declaration schema, and, finally,

	substitute the type arguments into the declaration schema.

Given a qualified reference, as defined in
 the section called “Qualified reference resolution”, with a qualifying type
 X, to a member or nested type declared by Y,
 and, in the case of a generic member or generic nested type, a list of
 type arguments for the type parameters of the member, we can construct a
 qualified realization of the member or nested type:
	first determining the principal instantiation of
 Y for X, and then

	substituting the type arguments in this principal
 instantiation into the declaration schema, and, finally,

	in the case of a generic member or generic nested type,
 substituting the type arguments into the declaration schema.

If, for any given qualified or unqualified reference, it is impossible
 to form the principal instantiation of the type that declares the referenced
 declaration, due to the hole described above in
 the section called “Principal instantiation of a supertype”, it is impossible to
 form a realization, and the reference to the declaration is illegal.

Chapter 4. Declarations

Ceylon is a statically typed language. Classes, interfaces, functions, values
 and aliases must be declared before use. The declaration of a function or value must
 include an explicit type, or allow the type to be inferred. Static typing allows the
 compiler to detect many errors, including:
	typing errors in identifier names,

	references to types which do not exist or are not
 visible,

	references to type members which do not exist or are not
 visible,

	argument lists which do not match parameter lists,

	type argument lists which do not match type parameter
 lists,

	operands to which an operator cannot apply,

	incompatible assignment of an expression of one type to a
 program element of a different type,

	evaluation of a value before it has been explicitly specified
 or assigned,

	assignment to a non-variable value,

	failure to refine a formal member of a
 supertype,

	refinement of a non-formal,
 non-default member of a supertype,

	switch statements which do not exhaust all
 cases of an enumerated type.

All declarations follow a general pattern:
Annotations
(keyword | Type) (TypeName | MemberName) TypeParameters? Parameters*
CaseTypes? ExtendedType? SatisfiedTypes?
TypeConstraints?
(Definition | ";")
A type parameter does not need an explicit declaration of this form unless it has
 constraints. In the case that it does have constraints, the constraint declaration does
 follow the general pattern.
This consistent pattern for declarations, together with the strict block structure
 of the language, makes Ceylon a highly regular language.
Compilation unit structure

A compilation unit is a text file, with the filename
 extension .ceylon.
Note: it is recommended that source file names contain only
 characters from the ASCII character set. This minimizes problems when
 transferring Ceylon source between operating systems.

There are three kinds of compilation unit:
	A regular compilation unit contains a list of toplevel type,
 value, or function definitions.

	A module descriptor, defined in
 the section called “Module descriptors”, contains a
 module declaration. The file must be named
 module.ceylon.

	A package descriptor, defined in
 the section called “Package descriptors”, contains a
 package declaration. The file must be named
 package.ceylon.

Any compilation unit may begin with a list of imported types, values,
 and functions.
Import* (ModuleDescriptor | PackageDescriptor | Declaration*)
Toplevel and nested declarations

A toplevel declaration defines a type—a class
 or interface—or a type alias, or a function or value.
Declaration: FunctionValueDeclaration | TypeDeclaration | ParameterDeclaration
FunctionValueDeclaration: FunctionDeclaration | ValueDeclaration | SetterDeclaration
TypeDeclaration: ClassDeclaration | ObjectDeclaration | InterfaceDeclaration | TypeAliasDeclaration
A toplevel declaration is not polymorphic and so may not be annotated
 formal, default, or
 actual.
Note: in a future release of the language, we might relax this
 restriction and support package extension with toplevel member refinement. This
 can be viewed as a regularization of the language. The practical application is
 that it would make toplevel invocations and instantiations polymorphic, obviating
 the need for things like dependency injection.

Most toplevel declarations contain nested declarations.
Nested declarations are often mixed together with executable statements.

Packages

Each compilation unit belongs to exactly one package.
 Every toplevel declaration of the compilation unit also belongs directly to this
 package. The package is identified by the location of the text file on the file
 system, relative to a root source directory, as defined in
 the section called “Source layout”.
A package is a namespace. A full package name is a period-separated list of
 identifiers.
FullPackageName: PackageName ("." PackageName)*
Note: it is recommended that package names contain only lowercase
 characters and decimal digits from the ASCII character set.

There is also a default package whose name is empty.
 It is impossible to import declarations from this package.
Every package belongs to exactly one module, as specified in
 the section called “Module architecture”. The default package belongs to the default
 module.

Imports

Code in one compilation unit may refer to a toplevel declaration in another
 compilation unit in the same package without explicitly importing the declaration.
 It may refer to a declaration defined in a compilation unit in another package
 only if it explicitly imports the declaration using the
 import statement.
An import statement specifies the name of a package to
 import from, and a list of declarations to import from that package.
Import: "import" FullPackageName ImportElements
A toplevel import statement is an
 import statement that occurs at the beginning of a compilation
 unit. A local import statement is an
 import statement that occurs at the beginning of a block, as
 defined in the section called “Blocks and statements”, class body, as defined in
 the section called “Classes”, or interface body, as defined in
 the section called “Interfaces”.
An import statement may introduce names into a
 namespace:
	A toplevel import statement may introduce names
 into the toplevel namespace of the compilation unit
 in which it occurs.

	A local import statement may introduce names into
 the local namespace of block, class body, or interface
 body in which it occurs.

For a given package:
	in each compilation unit, there may be at most one toplevel
 import statement that imports the package,
 and

	in each block, class body, or interface body, there may be at
 most one local import statement that imports the
 package.

An import statement may import from a package if and
 only if:
	the package belongs to the same module as the compilation unit
 containing the import statement, as specified by
 the section called “Source layout”, or

	the package is declared shared in its
 package descriptor, as defined by the section called “Package descriptors”,
 and the module descriptor of the module to which the compilation unit
 containing the import statement belongs, as specified
 by the section called “Source layout”, explicitly or implicitly imports the
 module containing the package, as defined by
 the section called “Module descriptors”.

Each import statement imports one or more toplevel
 declarations from the given package, specifying a list of import
 elements.
ImportElements: "{" (ImportElement ",")* (ImportElement | ImportWildcard) "}"
ImportElement: ImportTypeElement | ImportObjectElement | ImportFunctionValueElement
An import element is a reference to either:
	a single toplevel type (a class, interface, or alias) of the
 package,

	a single toplevel function or value of the package, or

	all toplevel declarations of the package.

An import element belonging to a toplevel import may
 either:
	introduce a name into the toplevel namespace of the compilation
 unit in which it occurs, or

	result in an alias for a member of a type within the compilation
 unit in which it occurs.

Every import element belonging directly to a toplevel
 import statement introduces a name into the toplevel namespace
 of the compilation unit.
An import element belonging to a local import may
 either:
	introduce a name into the namespace of the block, class body, or
 interface body in which it occurs, or

	result in an alias for a member of a type within the block, class
 body, or interface body in which it occurs.

Every import element belonging directly to a local
 import statement introduces a name into the namespace of the
 block, class body, or interface body in which it occurs.
An import element may not refer to a declaration that is not visible to
 the compilation unit, as defined by the section called “Visibility”.
An import statement may not contain two import elements
 which refer to the same declaration.
Note that toplevel declarations in the package ceylon.language
 never need to be explicitly imported. They are implicitly imported by every
 compilation unit.

 Note: the compiler produces a warning if an imported function or value hides,
 as defined in the section called “Hidden declarations”, any of the modifiers declared in
 ceylon.language listed in the section called “Declaration modifiers”,
 unless the modifier itself has an alias import in the compilation unit.

Note: an unused import results in a compiler warning.

Type imports

An import element that specifies a type name imports the toplevel type
 with that name from the imported package or type.
ImportTypeElement: TypeAlias? TypeName ImportElements?
The specified name must be the name of a type declaration belonging to
 the imported package or type.
import ceylon.collection { MutableSet, MutableList, MutableMap }
The import element may be followed by a list of nested import elements:
	if the import element introduces a name into a namespace, and
 if a nested import element is a reference to a constructor, then the
 nested import element also introduces a name into the same namespace,
 and need not specify an alias, or, otherwise

	the nested import element only defines an alias for the
 referenced member of the imported type, and this alias must be
 specified explicitly.

Note: an import element referring to a static
 member of a Java class imports the static member into the toplevel namespace of
 the compilation unit. However, this behavior is outside the scope of this
 specification.

Anonymous class imports

An import element that specifies the name of an anonymous class, as
 defined in the section called “Anonymous classes”, imports the anonymous class
 with that name from the imported package or type.
ImportObjectElement: FunctionValueAlias? MemberName ImportElements?
The specified name must be the name of an anonymous class declaration
 belonging to the imported package or type.
import ceylon.file { home, current }
The import element may be followed by a list of nested import elements:
	if the import element introduces a name into a namespace, then
 a nested import element also introduces a name into the same namespace,
 and need not specify an alias, or, otherwise

	the nested import element only defines an alias for the
 referenced member of the imported anonymous class, and this alias
 must be specified explicitly.

Function and value imports

An import element that specifies a function or value name imports the
 toplevel function or value with that name from the imported package or type.
ImportFunctionValueElement: FunctionValueAlias? MemberName
The specified name must be the name of a function or value declaration
 belonging to the imported package or type.
import ceylon.math.float { sqrt, e, pi }

Alias imports

The optional alias clause in a fully-explicit import allows resolution
 of cross-namespace declaration name collisions.
TypeAlias: TypeName "="
FunctionValueAlias: MemberName "="
An alias assigns a different name to the imported declaration, or to a
 member of the imported declaration. This name is visible within the compilation
 unit, block, class body, or interface body in which the import
 statement occurs.
import java.util { JavaMap = Map }
import my.math { fib = fibonnacciNumber }
import java.lang {
 Math { sin, cos, ln=log },
 System { sysprops=properties },
 Char=Character { upper=toUpperCase, lower=toLowerCase, char=charValue }
}

Wildcard imports

The elipsis ... acts as a wildcard in
 import statements. An import statement
 that specifies a wildcard imports every toplevel declaration of the imported
 package, except for any declaration whose name collides with the name of a
 declaration contained directly in the compilation unit, block, class body, or
 interface body in which the import statement occurs.
ImportWildcard: "..."
An import statement may specify a list of alias imports
 followed by a wildcard. In this case, the alias imports are imported with the
 specified names, and all other toplevel declarations are imported with their
 declared names.
import ceylon.collection { ... }
import my.math { fib = fibonnacciNumber, ... }
Note: overuse of wildcard imports is discouraged.

Imported name

Inside a compilation unit which imports a declaration, the declaration
 may be referred to, as specified in the section called “Unqualified reference resolution”
 and the section called “Qualified reference resolution”, by its imported
 name:
	For an import element with an alias, the imported name is the
 alias.

	For an import element with no alias, or for a wildcard import,
 the imported name is the original name of the declaration.

An import element may not result in an imported name that is the same
 as the name of a declaration directly contained in the compilation unit,
 block, class body, or interface body in which the import element occurs.
Two import elements occurring in the same compilation unit, block,
 class body, or interface body, which import into the toplevel namespace of
 the compilation unit, or into a local scope, may not result in the same
 imported name.
Two nested import elements belonging to the same import element may not
 result in the same imported name.
Note: if an imported declaration is already referenceable within
 a compilation unit without the import statement, for example,
 if it is defined in the same package, or in ceylon.language,
 then, even with the import statement, it is still referenceable
 via its declared name, as well as via the imported name.

Parameters

A function, class, or callable constructor declaration may declare
 parameters. A parameter is a value or function belonging to the
 declaration it parameterizes. Parameters are distinguished from other values or
 functions because they occur in a parameter list. A value or
 function is a parameter of a function, class, or constructor if it is:
	declared inline in a parameter list of the function, class, or
 callable constructor, or

	declared normally, within the body of the class, function, or
 callable constructor, but named in a parameter list of the class, function,
 or callable constructor.

A parameter list of a function, class, or constructor may have one or more
 elements without explicit type declarations. Each such element is interpreted as the
 name of a parameter declaration occurring in the body of the class, function, or
 constructor, and there must be a value or function declaration with that name.
 For a function, such an element is only allowed in the last parameter list of the
 function.
As a special exception, if a parameter of an anonymous function has no explicit
 type declaration, and there is no declaration with the given name occurring in the body
 of the anonymous function, then the type of the parameter must be inferable, according
 to the section called “Anonymous function parameter type inference”.
Conversely, every parameter declaration that occurs outside a parameter list must
 have the same name as a parameter with no explicit type that occurs in the parameter
 list of the function, class, or constructor in whose body the parameter declaration
 directly occurs, and its default argument, if any, must be specified in the parameter
 list.
A parameter declaration may only occur in a parameter list, or directly, as
 defined by the section called “Block structure and references”, in the body of a class, function, or
 callable constructor. A parameter declaration may not occur directly in the body of a
 getter, setter, or value constructor, nor in the body of a control structure. Nor may a
 parameter declaration appear as a toplevel declaration in a compilation unit.
ParameterDeclaration: (ValueParameter | CallableParameter | VariadicParameter) ";"
The following class definitions are semantically identical:
class Person(shared String name, shared variable Integer age=0, Address* addresses) {}
class Person(name, age=0, addresses) {
 shared String name;
 shared variable Integer age;
 Address* addresses;
}
Parameter lists

A parameter list is a list of parameter declarations and of names of parameters
 declared in the body of the class or function to which the parameter list belongs. A
 parameter list may include, optionally:
	one or more required parameters,

	one or more defaulted parameters (parameters with
 default values), and/or

	a variadic parameter.

In a parameter list, defaulted parameters, if any, must occur after required
 parameters, if any. The variadic parameter, if any, must occur last.
Parameters: "(" ((Required ",")* (Required | (Defaulted ",")* (Defaulted | Variadic)))? ")"
Every parameter list has a type, which captures the types of the individual
 parameters in the list, whether they are defaulted, and whether the last parameter
 is variadic. This type is always an subtype of Anything[]. The
 type of an empty parameter list with no parameters is [].
A parameter may not be annotated formal, but it may be
 annotated default.

Required parameters

A required parameter is a value or callable parameter without a default
 argument.
A required parameter in a parameter list may be a parameter declaration,
 or the name of a non-variadic parameter declared in the body of the function or
 class.
Required: ValueParameter | CallableParameter | MemberName
Required parameters must occur before any other parameters in the parameter
 list.

Defaulted parameters

A defaulted parameter is a value or callable parameter that specifies an
 expression that produces a default argument. A defaulted
 parameter may be either:
	a non-variadic parameter declaration, together with a default
 argument expression, or

	the name of a non-variadic parameter declared in the body of the
 function or class, together with its default argument expression.

Defaulted: ValueParameter Specifier | CallableParameter LazySpecifier | MemberName Specifier
The = and => specifiers are used
 throughout the language. In a parameter list they are used to specify a default
 argument.
Specifier: "=" Expression
LazySpecifier: "=>" Expression
The default argument expression may involve other
 non-variable parameters declared earlier in the parameter
 list or lists. It may not involve parameters declared later in the parameter
 list or lists. It may not involve variable parameters of
 the parameter list.
The default argument expression may not involve an assignment, compound
 assignment, increment, or decrement operator.
Defaulted parameters must occur after required parameters in the parameter
 list.
(Product product, Integer quantity=1, Price pricing(Product p) => p.price)
A parameter of a method or class annotated actual may
 not specify a default argument. Instead, it inherits the default argument, if
 any, of the corresponding parameter of the method it refines.
If two parameter lists are almost identical, differing only in that the
 first parameter of one list is defaulted, and the first parameter of the second
 list is required, and P is the the type of the second
 parameter list, then the type of the first parameter list is
 []|P.
Note: in Ceylon 1.0, for a function with multiple parameter lists,
 defaulted parameters may only occur in the first parameter list. This restriction
 will be removed.

TODO: Should we, purely for consistency, let you write
 f(Float x) => x in a parameter list, when the callable
 parameter is declared in the body of the function or class?

Value parameters

A value parameter is a reference, as specified in
 the section called “References”, that is named or defined in a parameter list.
 Like any other value declaration, it has a name, type, and, optionally,
 annotations.
ValueParameter: Annotations ValueParameterPrefix MemberName
ValueParameterPrefix: Type | "value" | "dynamic"
A value parameter may be declared using the keyword dynamic
 in place of the parameter type, indicating that it is a partially typed declaration.
 Such a parameter has no type.
In general, a value parameter must have an explicit type declaration,
 and may not be declared with the keyword value.
As a special exception, if a parameter of an anonymous function is declared
 with the keyword value, then the type of the parameter must be
 inferable, according to the section called “Anonymous function parameter type inference”.
If a value parameter x has type X,
 and a parameter list has type P with the principal instantiation
 Sequential<Y>, then the type of a new parameter list
 formed by prepending x to the first parameter list is:
	Tuple<X|Y,X,P>, or

	[]|Tuple<X|Y,X,P> if x is
 defaulted.

The default argument expression, if any, for a callable parameter is
 specified using an ordinary = specifier. The type of the
 default argument expression must be assignable to the declared type of the
 value parameter.
(String label, Anything() onClick)
({Value*} values, Comparison(Value,Value) by)

Callable parameters

A callable parameter is a function, as specified
 in the section called “Functions”, named or defined in a parameter list. Like
 any other function declaration, it has a name, type, one or more parameter
 lists, and, optionally, annotations.
CallableParameter: Annotations CallableParameterPrefix MemberName Parameters+
CallableParameterPrefix: Type | "void" | "dynamic"
A callable parameter may be declared using the keyword dynamic
 in place of the return type, indicating that it is a partially typed declaration.
 Such a parameter has no return type.
If a callable parameter f has callable type
 X(*A), as specified below in
 the section called “Callable type of a function”, and a parameter list has type
 P with the principal instantiation
 Sequential<Y>, then the type of a new parameter list
 formed by prepending f to the first parameter list is:
	Tuple<Y|X(*A),X(*A),P>,
 or

	[]|Tuple<Y|X(*A),X(*A),P>
 if f is defaulted.

The default argument expression, if any, for a callable parameter is
 specified using a lazy => specifier. The type of the
 default argument expression must be assignable to the return type of the
 callable parameter.
(String label, void onClick())
({Value*} values, Comparison by(Value x, Value y))

Variadic parameters

A variadic parameter is a value parameter that accepts
 multiple arguments:
	A variadic parameter declared T* accepts zero or
 more arguments of type T, and has type [T*].

	A variadic parameter declared T+ accepts one or
 more arguments of type T, and has type [T+].

VariadicParameter: Annotations VariadicParameterPrefix MemberName
VariadicParameterPrefix: UnionType ("*" | "+")
A variadic parameter in a parameter list may be a variadic parameter
 declaration, or the name of a variadic parameter declared in the body of
 the function or class.
Variadic: VariadicParameter | MemberName
The variadic parameter must be the last parameter in a parameter list. A
 variadic parameter may not have a default argument. A variadic parameter declared
 T+ may not occur in a parameter list with defaulted parameters.
(Name name, Organization? org=null, Address* addresses)
(Float+ floats)
The type of a parameter list containing just a variadic parameter of type
 T* is [T*] The type of a parameter list
 containing just a variadic parameter of type T+ is
 [T+].
Note: in Ceylon 1.0, for a function with multiple parameter lists,
 a variadic parameters may only occur in the first parameter list. This restriction
 will be removed.

Interfaces

An interface is a type schema, together with
 implementation details for some members of the type. Interfaces may not
 be directly instantiated.
InterfaceDeclaration: Annotations InterfaceHeader (InterfaceBody | TypeSpecifier ";")
An interface declaration may optionally specify a list of type
 parameters. An interface declaration may also have a list of interfaces
 is satisfies, a self type or an enumerated list of cases, and/or a list
 of type constraints.
InterfaceHeader: ("interface"|"dynamic") TypeName TypeParameters? InterfaceInheritance TypeConstraints?
InterfaceInheritance: CaseTypes? SatisfiedTypes?
To obtain a concrete instance of an interface, it is necessary to
 define and instantiate a class that satisfies the interface, or define
 an anonymous class that satisfies the interface.
The body of an interface contains:
	an optional list of local import statements,

	member (method, attribute, and member class) declarations,

	specification statements interpretable as attribute or method
 refinement, as defined in the section called “Attribute refinement” and
 the section called “Method refinement”, and

	nested interface, type alias, and abstract
 class declarations.

InterfaceBody: "{" Import* (Declaration | Specification)* "}"
Unlike the body of a class, method, or attribute, the body of an
 interface is not executable, and does not directly contain procedural
 code.
shared interface Comparable<Other> {
 shared formal Comparison compare(Other other);
 shared Boolean largerThan(Other other) => compare(other)==larger;
 shared Boolean smallerThan(Other other) => compare(other)==smaller;
}
An interface may declare formal methods, attributes,
 and member classes, and concrete methods, getters, setters, and member classes.
 A reference declaration, as defined in the section called “References”, or
 anonymous class declaration, as defined in the section called “Anonymous classes”,
 may not directly occur in the body of an interface.
A non-abstract nested class declaration is called a
 member class of the interface. A nested interface or
 abstract class declaration is not part of the schema of the
 interface type, and is therefore not considered a member of the interface.
Interface bodies

The body of an interface consists purely of declarations. The following
 constructs may not occur sequentially in the body of an interface:
	a statement or control structure (except for specification
 statements interpretable as attribute or method refinement),

	a reference declaration,

	a forward-declared method or attribute declaration, or

	an object declaration.

Within an interface body, a super reference
 is any occurrence of the expression super, unless it also
 occurs in the body of a nested class or interface declaration. A statement or
 declaration contained in the interface body may not:
	pass a super reference as an argument of an instantiation,
 function invocation, or extends clause expression
 or as the value of a value assignment or specification,

	use a super reference as an operand of any operator except the
 member selection operator, or the of operator as
 specified in the section called “super”,

	return a super reference, or

	narrow the type of a super reference using an assignability
 condition, as defined in the section called “Assignability conditions”.

Interface inheritance

An interface may satisfy any number of other interfaces, as defined in the section called “Satisfaction”.
shared interface List<Element>
 satisfies Collection<Element> & Correspondence<Integer,Element>
 given Element satisfies Object {
 ...
}
Every type listed in the satisfies clause must
 be an interface. An interface may not satisfy the same interface twice
 (not even with distinct type arguments).
Note: this second restriction is not strictly necessary.
 In fact, satisfies List<One>&List<Two>
 means the same thing as satisfies List<One&Two>,
 and the compiler already needs to be able to figure that out when it
 comes to multiple instantiations of the same interface inherited
 indirectly. Still, the restriction seems harmless enough.

The interface is a subtype of every type listed in the
 satisfies clause. The interface is also a subtype of
 the type Object defined in
 ceylon.language.
An interface inherits all members (methods, attributes and member
 types) of every supertype. That is, every member of every supertype of the
 interface is also a member of the interface. Furthermore,
 the interface inherits all nested types (interfaces and
 abstract classes) of every supertype.
The schema of the inherited members is formed by substituting type
 arguments specified in the satisfies clause.
An interface that satisfies a nested interface must be a member of
 the type that declares the nested interface or of a subtype of the type
 that declares the nested interface.
A user-defined interface may not satisfy the interface
 Callable defined in ceylon.language
 nor directly satisfy the interface ConstrainedAnnotation
 defined in ceylon.language.

Sealed interfaces

A toplevel or nested interface may be annotated sealed
 and is called a sealed interface.
An interface annotated sealed may not be satisfied
 by a class or interface outside the module in which it is defined.

Enumerated interfaces

An interface declaration may enumerate a list of cases of the interface,
 as defined in the section called “Cases”.
shared interface Node<Element>
 of Root<Element> | Branch<Element> | Leaf<Element> { ... }
The cases may be interfaces, classes, or toplevel anonymous classes. A
 case may be an abstract class. Each case must be a direct
 subtype of the interface type. An interface may not be a case of itself. An
 interface declaration may not list the same case twice.
If an interface has an of clause, then every interface
 or class which directly inherits the interface must occur as exactly one of the
 enumerated cases of the interface. Furthermore, any interface or class which
 indirectly inherits the interface must inherit exactly one of the enumerated
 cases of the interface.

Interface aliases

An interface alias is an interface declaration which
 specifies another type.
TypeSpecifier: "=>" Type
The specified type must be an interface type, that
 is, a reference to an interface with no type parameters or an instantiation of
 a generic interface, and is called the aliased type.
An interface alias simply assigns an alternative name to the aliased type.
 A reference to the alias may occur anywhere a reference to an interface may occur.
shared interface PeopleByName => Map<String,Person>;
interface Compare<Value> => Comparison(Value,Value);
If the aliased interface is a parameterized type, the aliased type must
 explicitly specify type arguments.
A class or interface may satisfy an interface alias, in which case, the
 class or interface inherits the aliased interface type.
Interface aliases are not reified types. The metamodel reference for an
 interface alias type—for example, PeopleByName—returns
 the metamodel object for the aliased interface—in this case,
 Map<String,Person>, as specified in
 the section called “Type argument reification”.

Dynamic interfaces

A dynamic interface is an interface declared with the
 keyword dynamic. Dynamic interfaces may be used to model the
 type of objects defined in dynamically typed native code.
Every declaration nested inside a dynamic interface must be declared
 formal. A dynamic interface may not satisfy any interface
 that is not also a dynamic interface.
Within a dynamic block, defined in the section called “Dynamic blocks”,
 assignment of a value with no Ceylon type to a dynamic interface type does not
 result in an AssertionError, as defined in
 the section called “Dynamic type checking”. Instead, the value is coerced to the
 dynamic interface type.

Classes

A class is a stateful, instantiable type. It is a
 type schema, together with implementation details of the members of the type.
ClassDeclaration: Annotations ClassHeader (ClassBody | ClassSpecifier ";")
An ordinary class declaration may specify, optionally, a list of parameters
 required to instantiate the type, and, also optionally, a list of type parameters.
 A class declaration may have a superclass, a list of interfaces it satisfies, a
 self type or an enumerated list of cases, and/or a list of type constraints.
ClassHeader: "class" TypeName TypeParameters? Parameters? ClassInheritance TypeConstraints?
ClassInheritance: CaseTypes? ExtendedType? SatisfiedTypes?
To obtain an instance of a class, it is necessary to instantiate the
 class, or a subclass of the class.
The body of a class contains:
	an optional list of local import statements,

	member (method, attribute, and member class) declarations,

	nested interface, type alias, and abstract
 class declarations, and

	instance initialization code and, if the class does not have
 a parameter list, constructors.

ClassBody: "{" Import* (Declaration | Statement | ConstructorDeclaration)* "}"
The body of a class may contain executable code.
shared class Counter(Integer initialCount=0) {

 variable Integer n = initialCount;

 print("Initial count: ``n``");

 shared Integer count => n;

 shared void increment() {
 n++;
 print("Count: ``n``");
 }

}
A non-abstract nested class declaration is called a
 member class of the class. A nested interface or
 abstract class declaration is not part of the schema of the
 class type, and is therefore not considered a member of the class.
A class is not required to have a separate nested constructor declaration.
 Instead, the body of the class may itself declare its
 initializer parameters. An initializer parameter may be
 used anywhere in the class body, including in method and attribute definitions.
shared class Key(Lock lock) {
 shared void lock() {
 lock.engage(this);
 print("Locked.");
 }
 shared void unlock() {
 lock.disengage(this);
 print("Unlocked.");
 }
 shared Boolean locked => lock.engaged;
}
An initializer parameter may be shared.
shared class Point(shared Float x, shared Float y) { ... }
shared class Counter(count=0) {
 shared variable Integer count;
 shared void increment() => count++;
}
If a class does not specify an initializer parameter list, it must have
 at least one shared constructor, as defined below in the section called “Constructors”.
Callable type of a class

The callable type of a class with an initializer
 parameter list captures the type and initializer parameter types of the class.
 The callable type is T(*P), where T is
 the applied type formed by the class with its own type parameters as type
 arguments, and P is the type of the initializer parameter
 list of the class.
The callable type of a class with a default constructor is the callable
 type of the default constructor.
A class with no initializer parameter list and no default constructor
 does not have a callable type.
An abstract class is not callable, except from the
 extends clause of a subclass, or the class specifier of a
 class alias.

Initializer section

The initial part of the body of a class is called the
 initializer of the class and contains a mix of declarations,
 statements, and control structures. The initializer is executed every time the
 class is instantiated. If the class does not have an initializer parameter list,
 the initializer section may include one or more constructor declarations, as
 defined in the section called “Constructors”.
A class initializer is responsible for initializing the state of the new
 instance of the class, before a reference to the new instance is available to
 clients.
shared abstract class Point() {
 shared formal Float x;
 shared formal Float y;
}
shared class DiagonalPoint(Float distance)
 extends Point() {

 value d = distance / 2^0.5;
 x => d;
 y => d;

 "must have correct distance from origin"
 assert (x^2 + y^2 == distance^2);

}
shared object origin
 extends Point() {
 x => 0.0;
 y => 0.0;
}
Within a class initializer, a self reference to the instance
 being initialized is:
	any occurrence of the expression this, as
 defined in the section called “this”, or super, as
 defined in the section called “super”, unless it also occurs in the
 body of a nested class or interface declaration,

	any occurrence of the expression outer, as
 defined in the section called “outer”, in the body of a class or
 interface declaration immediately contained by the class,

	any reference to an anononymous class that inherits the class,
 or, if the class is an anonymous class, to the anonymous class itself,
 or

	any reference to a value constructor of the class or of a class
 which inherits the class.

A statement or declaration contained in the initializer of a class may
 not evaluate an attribute, invoke a method, or instantiate a member class upon
 the instance being initialized, including upon a self reference to the instance
 being initialized, if the attribute, method, or member class:
	occurs later in the body of the class,

	is annotated formal or default,
 or

	is inherited from an interface or superclass, and is not refined
 by a declaration occurring earlier in the body of the class.

A member class contained in the initializer of a class may not
 extend a member or nested class of an interface or
 superclass of the class.
Furthermore, a statement or declaration contained in the initializer
 of a class may not:
	pass a self reference to the instance being initialized as an
 argument of an instantiation, function invocation, or extends
 clause expression or as the value of a value assignment or specification,

	use a self reference to the instance being initialized as an
 operand of any operator except the member selection operator, or
 the of operator,

	return a self reference to the instance being initialized, or

	narrow the type of a self reference to the instance being
 initialized using an assignability condition, as defined in
 the section called “Assignability conditions”.

Nor may the class pass a self reference to the instance being
 initialized as an argument of its own extends clause
 expression, if any.
As a special exception to these rules, a statement contained in an
 initializer may assign a self-reference to the instance being initialized
 to a reference annotated late.
For example, the following code fragments are not legal:
class Graph() {
 OpenList<Node> nodes = ArrayList<Node>();
 class Node() {
 nodes.add(this); //error: self reference in initializer
 }
}
class Graph() {
 class Node() {}
 Node createNode() {
 Node node = Node();
 nodes.add(node); //error: forward reference in initializer
 return node;
 }
 OpenList<Node> nodes = ArrayList<Node>();
}
But this code fragment is legal:
class Graph() {
 OpenList<Node> nodes = ArrayList<Node>();
 Node createNode() {
 Node node = Node();
 nodes.add(node);
 return node;
 }
 class Node() {}
}

Declaration section

The remainder of the body of the class consists purely of declarations,
 similar to the body of an interface. The following constructs may not occur
 sequentially in the declaration section:
	a statement or control structure, defined in
 the section called “Control structures and assertions”,

	a reference declaration, as defined below in
 the section called “References”,

	a constructor declaration, as defined below in
 the section called “Constructors”,

	a forward-declared function or value declaration not
 annotated late, as defined below in
 the section called “Forward declaration of functions” and
 the section called “Forward declaration of values”,

	an object declaration with a non-empty
 initializer section, or

	an object declaration that directly extends
 a class other than Object or Basic
 in ceylon.language.

However, the declarations in this second section may freely use
 this and super, and may invoke any method,
 evaluate any attribute, or instantiate any member class of the class or its
 superclasses.
Within the declaration section of a class body, a super
 reference is any occurrence of the expression super,
 unless it also occurs in the body of a nested class or interface declaration. A
 statement or declaration contained in the declaration section of a class body may
 not:
	pass a super reference as an argument of an instantiation,
 function invocation, or extends clause expression
 or as the value of a value assignment or specification,

	use a super reference as an operand of any operator except the
 member selection operator, or the of operator as
 specified in the section called “super”,

	return a super reference, or

	narrow the type of a super reference using an assignability
 condition, as defined in the section called “Assignability conditions”.

Class inheritance

A class may extend another class, as defined in
 the section called “Extension”.
shared class Customer(Name name, Organization? org = null)
 extends Person(name, org) {
 ...
}
The class is a subtype of the type specified by the extends
 clause. If a class does not explicitly specify a superclass using extends,
 its superclass is the class Basic defined in
 ceylon.language.

A class may satisfy any number of interfaces, as defined in
 the section called “Satisfaction”.
class Token()
 extends Datetime()
 satisfies Comparable<Token> & Identifier {
 ...
}
The class is a subtype of every type listed in the satisfies
 clause. A class may not satisfy the same interface twice (not even with distinct
 type arguments).
A class inherits all members (methods, attributes, and member types) of every
 supertype. That is, every member of every supertype of the class is also a member
 of the class. Furthermore, the class inherits all nested types (interfaces and
 abstract classes) of every supertype.
Unless the class is declared abstract or
 formal, the class:
	must declare or inherit a member that refines each
 formal member of every interface it satisfies directly
 or indirectly, and

	must declare or inherit a member that refines each
 formal member of its superclass.

The schema of the inherited members is formed by substituting type arguments
 specified in the extends or satisfies clause.
A subclass with an initializer parameter list must pass arguments to
 each superclass initialization parameter or callable constructor parameter
 in the extends clause. A subclass with no initializer
 parameter list may not pass arguments in the extends
 clause.
shared class SpecialKey1()
 extends Key(SpecialLock()) {
 ...
}
shared class SpecialKey2(Lock lock)
 extends Key(lock) {
 ...
}
A subclass of a nested class must be a member of the type that declares
 the nested class or of a subtype of the type that declares the nested class.
 A class that satisfies a nested interface must be a member of the type that
 declares the nested interface or of a subtype of the type that declares the
 nested interface.
A user-defined class may not satisfy the interface
 Callable defined in ceylon.language nor
 directly satisfy the interface ConstrainedAnnotation
 defined in ceylon.language.

Abstract, final, sealed, formal, and default classes

A toplevel or nested class may be annotated abstract
 and is called an abstract class.
A toplevel or nested class may be annotated final
 and is called a final class.
A toplevel or nested class may be annotated sealed
 and is called a sealed class.
If a class annotated shared is a member of a containing
 class or interface, then the class may be annotated formal
 and is called a formal member class, or, sometimes, an
 abstract member class.
An abstract class or formal member
 class may have formal members.
An abstract class may not be instantiated.
A formal member class may be instantiated.
A class which is not annotated formal or
 abstract is called a concrete class.
A concrete class may not have formal members.
A class annotated final must be a concrete class.
A class annotated final may not have
 default members.
If a concrete class annotated shared is a member
 of a containing class or interface, then the class may be annotated
 default and is called a default
 member class.
A toplevel class may not be annotated formal or
 default.
An un-shared class may not be annotated
 formal or default.
A class annotated sealed may not be instantiated
 or extended outside the module in which it is defined.
A class with no parameter list may not be annotated
 sealed.
A member class annotated sealed formal must
 belong to a sealed class or interface.
Note: a formal member class would be a
 reasonable syntax for declaring virtual types. We think we don't need
 virtual types because they don't offer much that type parameters don't
 already provide. For example:

 shared formal class Buffer(Character...)
 satisfies Sequence<Character>;

Member class refinement

Member class refinement is a unique feature of Ceylon, akin to
 the "factory method" pattern of many other languages.
	A member class annotated formal or
 default may be refined by any class or
 interface which is a subtype of the class or interface which
 declares the member class.

	A member class annotated formal
 must be refined by every concrete class
 which is a subtype of the class or interface that declares the
 member class, unless the class inherits a concrete member class
 from a superclass that refines the formal
 member class.

A member class of a subtype refines a member
 class of a supertype if the member class of the supertype is
 shared and the two classes have the same name. The
 first class is called the refining class, and the
 second class is called the refined class.
Then, given the refined realization of the class it refines, as
 defined in the section called “Realizations”, and, after substituting the
 type parameters of the refined class for the type parameters of the
 refining class in the schema of the refining class, the refining class
 must:
	have the same number of type parameters as the refined
 schema, and for each type parameter the intersection of its
 upper bounds must be a supertype of the intersection of the
 upper bounds of the corresponding type parameter of the
 realization,

	have a parameter list with the same signature as the
 realization, and

	directly or indirectly extend the class it refines.

Furthermore:
	the refining class must be annotated actual,
 and

	the refined class must be annotated formal
 or default.

If a member class is annotated actual, it must
 refine some member class of a supertype.
A member class may not, directly or indirectly, refine two different
 member classes not themselves annotated actual.
Then instantiation of the member class is polymorphic, and the actual
 subtype instantiated depends upon the concrete type of the containing class
 instance.
shared abstract class Reader() {
 shared formal class Buffer(Character* chars)
 satisfies Character[] {}
 ...
}
shared class FileReader(File file)
 extends Reader() {
 shared actual class Buffer(Character* chars)
 extends super.Buffer(chars) {
 ...
 }
 ...
}
All of the above rules apply equally to member classes which are
 aliases.
shared abstract class Reader() {
 shared formal class Buffer(Character* chars) => AbstractBuffer(*chars);
 ...
}
shared class FileReader(File file)
 extends Reader() {
 shared actual class Buffer(Character* chars) => FileBuffer(*chars);
 ...
}

Anonymous classes

An object or anonymous class
 declaration is a compact way to define a class with a single value
 constructor, together with a getter aliasing this value constructor.
ObjectDeclaration: Annotations ObjectHeader ClassBody
An object has an initial lowercase identifier.
 An object declaration does not specify parameters or
 type parameters.
ObjectHeader: "object" MemberName ObjectInheritance
ObjectInheritance: ExtendedType? SatisfiedTypes?
An object declaration specifies the name of the
 value and the schema, supertypes, and implementation of the class. It does
 not explicitly specify a type name. Instead, the type name is formed by
 prefixing the value name with \I, turning it into an
 initial uppercase identifier, as specified by
 the section called “Identifiers and keywords”.
An object class:
	satisfies and/or extends the types specified by the
 object declaration,

	has no initializer parameter list,

	has a single shared value constructor
 with the same name as the object, with an
 empty body and the same extends clause as
 the object declaration, which is the single
 enumerated case of the class,

	is shared, if and only if the
 object is annotated
 shared,

	is neither abstract nor
 formal,

	is implicitly final.

Therefore, members of an object may not be
 declared formal nor default.
The body of the object declaration is the body
 of the class.
This class never appears in types inferred by local declaration type
 inference or generic type argument inference. Instead, occurrences of the
 class are replaced with the intersection of the extended type with all
 satisfied types.
An object value is a getter, as defined in
 the section called “Getters”, that simply returns a reference to the value
 constructor of the class. The value:
	is shared, if and only if the
 object is annotated
 shared,

	may refine a member of a supertype, if and only if the
 object is annotated
 actual, and

	is neither default nor
 formal.

Therefore, the object may not be annotated
 default nor formal.
Annotations applying to an object declaration
 are considered annotations of the object value, and
 are accessible via its ValueDeclaration, as defined
 in the section called “Reference expressions”.
The following declaration:
shared my object red extends Color('FF0000') {
 string => "Red";
}
Is exactly equivalent to:
shared final class \Ired of red extends Color {
 shared new red extends Color('FF0000') {}
 string => "Red";
}

shared my \Ired red => \Ired.red;
Where \Ired is the type name assigned by the
 compiler.
shared object sql {
 shared String escape(String string) { ... }
}

...

String escapedSearchString = sql.escape(searchString);

Enumerated classes

A class declaration may enumerate a list of cases of the class, as
 defined in the section called “Cases”.
	For an abstract class, the cases may be
		 classes or toplevel anonymous classes. Each case must be a direct
		 subclass of the enumerated class. A case may itself be an
		 abstract class.

	For a non-abstract toplevel class, the
 cases must be value constructors of the class.

The cases listed in the of clause must exhaust
 every means by which an instance of the class may be instantiated:
	if an abstract class has an
		 of clause, then every class that directly
		 extends the class must occur as exactly one of the enumerated
		 cases of the class listed in the of clause
		 and, furthermore, every class that indirectly inherits the
		 abstract class must inherit one of the
		 enumerated cases of the class, or

	if a non-abstract class has an
		 of clause, then every non-partial constructor
		 of the class must occur as exactly one of the enumerated cases of
		 the class listed in the of clause.

shared abstract class Boolean()
 of true | false {}

shared object true extends Boolean() { string => "true"; }
shared object false extends Boolean() { string => "false"; }
shared abstract class Node<Element>(String name)
 of Branch<Element> | Leaf<Element> { ... }

shared class Leaf<Element>(String name, Element element)
 extends Node<Element>(name) { ... }

shared class Branch<Element>(String name, Node<Element> left, Node<Element> right)
 extends Node<Element>(name) { ... }
shared class Status of enabled | disabled {
 shared actual String string;
 shared new enabled { string => "enabled"; }
 shared new disabled { string => "disabled"; }
}
A non-abstract class with an initializer parameter
 list or a callable constructor may not specify an of
 clause.
A non-abstract, non-toplevel class may not specify
 an of clause.
A class declaration may not list the same case twice.
Note: in a future release of the language, we may introduce
 an abbreviated syntax like:

 shared abstract class Boolean(shared actual String string)
 of object true ("true") |
 object false ("false") {}

Class aliases

A class alias is a class declaration which specifies
 a reference to a class or callable constructor of a class, followed by a
 positional argument list, as defined in the section called “Positional argument lists”.
ClassSpecifier: "=>" (Extension | Construction)
The specification of the class or callable constructor is treated as a
 value expression, as in the section called “Extension”. The type of this value
 expression must be a class type, that is, a reference to a
 class with no type parameters or an instantiation of a generic class, and is
 called the aliased type.
A class alias simply assigns an alternative name to the aliased type. A
 reference to the alias may occur anywhere a reference to a class may occur.
shared class People(Person* people) => ArrayList<Person>(*people);
class Named<Value>(String name, Value val)
 given Value satisfies Object
 => Entry<String,Value>(name, val);
Arguments to the initializer parameters of the aliased class must be
 specified.
If the aliased class is a parameterized type, the aliased type must
 explicitly specify type arguments.
The type arguments may not be inferred from the initializer arguments.
Note: currently the compiler imposes a restriction that the
 callable type of the aliased class must be assignable to the callable type
 of the class alias. This restriction will be removed in future.

If a toplevel class alias or un-shared class alias
 aliases an abstract class, the alias must be annotated
 abstract, and it may not be directly instantiated.
If a shared class alias nested inside the body of a
 class or interface aliases an abstract class, the alias
 must be annotated abstract or formal.
 If it is annotated formal, it is considered a member
 class of the containing class or interface. If it is annotated
 abstract, it is considered an abstract nested class of the
 containing class or interface.
A class alias may not alias a partial constructor. A
 shared class alias may not alias an
 un-shared constructor.
A class may extend a class alias, in which case, the class inherits the
 aliased class type.
Class aliases are not reified types. The metamodel reference for a
 class alias type—for example, People—returns
 the metamodel object for the aliased class—in this case,
 ArrayList<Person>, as specified in
 the section called “Type argument reification”.

Type aliases

A type alias declaration assigns a name to an arbitrary type expression,
 usually involving a union and/or intersection of types.
TypeAliasDeclaration: Annotations AliasHeader TypeSpecifier ";"
AliasHeader: "alias" TypeName TypeParameters? TypeConstraints?
The specified type may be any kind of type. A reference to the alias
 may be used anywhere a union or intersection type may be used. The alias may
 not appear in an extends or satisfies
 clause. The alias may not be instantiated.
shared alias Number => Integer|Float|Decimal|Whole;
alias ListLike<Value> => List<Value>|Map<Integer,Value>;
alias Numbered<Num,Value> given Num satisfies Ordinal<Num>
 => Correspondence<Num,Value>;
Note: class, interface, and type aliases use a "fat arrow" lazy
 specifier => instead of = because the
 type parameters declared on the left of the specifier are in scope on the right
 of the specifier. An alias is in general a type constructor.

A class or interface may not extend or satisfy a type alias.
Type aliases are not reified types. The metamodel reference for a type
 alias type—for example, Number—returns the
 metamodel object for the aliased type—in this case,
 Integer|Float|Decimal|Whole, as specified in
 the section called “Type argument reification”.

Functions

A function is a callable block of code. A function
 may have parameters and may return a value. If a function belongs to a type,
 it is called a method.
FunctionDeclaration: Annotations FunctionHeader (Block | LazySpecifier? ";")
All function declarations specify the function name, one or more parameter
 lists, and, optionally, a list of type parameters. A generic function declaration
 may have a list of type constraints.
FunctionHeader: FunctionPrefix MemberName TypeParameters? Parameters+ TypeConstraints?
A function declaration may specify a type, called the return
 type, to which the values the method returns are assignable, or it may
 specify that the function is a void function—a function
 which does not return a useful value, and only useful for its effect.
FunctionPrefix: Type | "function" | "dynamic" | "void"
Instead of an explicit return type, a function may be declared using:
	the keyword dynamic, indicating that it is a
 partially typed declaration with no return type, or

	the keyword function, indicating that its return
		 type is inferred.

A function implementation may be specified using either:
	a block of code, or

	a lazy specifier.

If a function is a parameter, it must not specify any implementation.
The return type of a void function is considered to be
 Anything defined in ceylon.language.
Note: a void function with a concrete
 implementation returns the value null. However, since a
 void function may be a reference to a non-void
 function, or a method refined by a non-void function,
 this behavior can not be depended upon and is not implied by the semantics
 of void.

Callable type of a function

The callable type of a function captures the return
 type and parameter types of the function.
	The callable type of a function with a single parameter list is
 R(*P) where R is the return type
 of the method, or Anything if the function is
 void, and P is the type of the
 parameter list.

	The callable type of a function with multiple parameter lists is
 O(*P), where O is the callable
 type of a method produced by eliminating the first parameter list, and
 P is the type of the first parameter list of the
 function.

Note: this means that the callable type of a function
 lists the parameter lists in reverse order of the function declaration.
 A function C f(A a)(B b) has the callable type
 C(B)(A), not C(A)(B).

Note: the identification of void with
 Anything instead of Null or some other
 unit type will probably be contraversial. This approach allows a
 non-void method to refine a void
 method or a non-void function to be assigned to a
 void functional parameter. Thus, we avoid rejecting
 perfectly well-typed code.

Functions with blocks

A function implementation may be a block.
	If the function is declared void, the block
 may not contain a return directive that specifies
 an expression.

	Otherwise, every conditional execution path of the block must
 end in a return directive that specifies an
 expression assignable to the return type of the function, or in a
 throw directive, as specified in
 the section called “Definite return”.

shared Integer add(Integer x, Integer y) {
 return x + y;
}
shared void printAll(Object* objects) {
 for (obj in objects) {
 print(obj);
 }
}
shared void addEntry(Key->Item entry) {
 map.put(entry.key,entry.item);
}
shared Set<Element> singleton<Element>(Element element)
 given Element satisfies Comparable<Element> {
 return TreeSet { element };
}

Functions with specifiers

Alternatively, a function implementation may be a lazy specifier, that
 is, an expression specified using =>. The type of the
 specified expression must be assignable to the return type of the function.
 In the case of a function declared void, the expression
 must be a legal statement, as defined by the section called “Expression statements”.
shared Integer add(Integer x, Integer y) => x + y;
shared void addEntry(Key->Item entry) => map.put(entry.key,entry.item);
shared Set<Element> singleton<Element>(Element element)
 given Element satisfies Comparable<Element>
 => TreeSet { element };

Function return type inference

A non-void, un-shared function with
 a block or lazy specifier may be declared using the keyword function
 in place of the explicit return type declaration. Then the function return type is
 inferred:
	if the function implementation is a lazy specifier, then the
 return type of the function is the type of the specified expression,

	if the function implementation is a block, and the function contains
 no return directive, then the return type of the method
 is Nothing (this is the case where the method always
 terminates in a throw directive), or,

	otherwise, the return type of the function is the union of all
 returned expression types of return directives
 of the method body.

This function has inferred return type Integer.
function add(Integer x, Integer y) => x + y;
This function has inferred return type Float|Integer.
function unit(Boolean floating) {
 if (floating) {
 return 1.0;
 }
 else {
 return 1;
 }
}
This function has inferred return type Nothing.
function die() {
 throw;
}

Forward declaration of functions

The declaration of a function may be separated from the specification of
 its implementation. If a function declaration does not have a lazy specifier,
 or a block, and is not annotated formal, and is not a
 parameter, it is a forward-declared function.
A forward-declared function may later be specified using a specification
 statement, as defined in the section called “Specification statements”. The
 specification statement for a forward-declared function may be:
	a lazy specification statement with parameter lists of exactly
 the same types as the function, and a specified expression assignable
 to the declared type of the function, or

	an ordinary specification statement with a specified expression
 assignable to the callable type of the function.

Comparison order(String x, String y);
if (reverseOrder) {
 order(String x, String y) => y<=>x;
}
else {
 order(String x, String y) => x<=>y;
}
String format(Integer x);
switch (base)
case (decimal) {
 format = (Integer i) => i.string;
}
case (binary) {
 format = formatBin;
}
case (hexadecimal) {
 format = formatHex;
}
Every forward-declared function must explicitly specify a type. It may
 not be declared using the keyword function.
A toplevel function may not be forward-declared. A method of an interface
 may not be forward-declared. A method annotated default may
 not be forward-declared.
If a shared method is forward-declared, its
 implementation must be definitely specified by all conditional paths in the
 class initializer.

Functions with multiple parameter lists

A function may declare multiple lists of parameters. A function with
 more than one parameter list returns instances of Callable
 in ceylon.language when invoked. Every function with
 multiple parameter lists is exactly equivalent to a function with a single
 parameter list that returns an anonymous function.
This function declaration:
Boolean greaterThan<Element>(Element val)(Element element)
 given Element satisfies Comparable<Element> =>
 element>val;
is equivalent to the following:
Boolean(Element) greaterThan<Element>(Element val)
 given Element satisfies Comparable<Element> =>
 (Element element) => element>val;
For a function with n parameter lists, there are
 n-1 inferred anonymous functions. The ith
 inferred function:
	has a callable type formed by eliminating the first i
 parameter lists of the original declared function,

	has the i+1th parameter list of the original
 declared function, and

	if i<n, returns the i+1th
 inferred function, or

	otherwise, if i==n, has the implementation
 of the original declared function.

Then the original function returns the first inferred anonymous function.
This method declaration:
function fullName(String firstName)(String middleName)(String lastName)
 => firstName + " " + middleName + " " + lastName;
Is equivalent to:
function fullName(String firstName) =>
 (String middleName) =>
 (String lastName) =>
 firstName + " " + middleName + " " + lastName;

Formal and default methods

If a function declaration does not have a lazy specifier, or a block,
 and is annotated shared, and is a method of either:
	an interface, or

	a class annotated abstract or
 formal,

then the function declaration may be annotated formal,
 and is called a formal method, or, sometimes, an
 abstract method.
shared formal Item? get(Key key);
A method which is not annotated formal is called
 a concrete method.
If a concrete method is annotated shared, and is
 a member of a class or interface, then it may be annotated default
 and is called a default method.
shared default void writeLine(String line) {
 write(line);
 write("\n");
}
A method annotated formal may not specify an
 implementation (a lazy specifier, or a block).
A method annotated default must specify an
 implementation (a lazy specifier, or a block), and may not be
 forward-declared.
Every formal method must explicitly specify a type.
 It may not be declared using the keyword function.
A toplevel method may not be annotated formal or
 default.
An un-shared method may not be annotated
 formal or default.

Method refinement

Methods may be refined, just like in other object-oriented languages.
	A class or interface may refine any formal
 or default method it inherits, unless it inherits
 a non-formal non-default method
 that refines the method.

	A concrete class must refine every formal
 method it inherits, unless it inherits a non-formal
 method that refines the method.

A method of a subtype refines a method of a
 supertype if the method of the supertype is shared
 and the two methods have the same name. The first method is called the
 refining method, and the second method is called
 the refined method.
Then, given the refined realization of the method it refines, as
 defined in the section called “Realizations”, and, after substituting the
 type parameters of the refined method for the type parameters of the
 refining method in the schema of the refining method, the refining method
 must:
	have the same number of type parameters as the refined
 schema, and for each type parameter the intersection of its
 upper bounds must be a supertype of the intersection of the
 upper bounds of the corresponding type parameter of the
 realization,

	have the same number of parameter lists, with the same
 signatures, as the realization, and

	have a return type that is assignable to the return type
 of the realization, or

	if it has no return type, the refined method must also
 have no return type.

Note: in a future release of the language, we would like
 to support contravariant refinement of method parameter types.

Furthermore:
	the refining method must be annotated actual,
 and

	the refined method must be annotated formal
 or default.

If a method is annotated actual, it must refine
 some method defined by a supertype.
A method may not, directly or indirectly, refine two different
 methods not themselves annotated actual.
Then invocation of the method is polymorphic, and the actual method
 invoked depends upon the concrete type of the class instance.
shared abstract class AbstractSquareRooter() {
 shared formal Float squareRoot(Float x);
}
class ConcreteSquareRooter()
 extends AbstractSquareRooter() {
 shared actual Float squareRoot(Float x) => x^0.5;
}
Alternatively, a subtype may refine a method using a specification
 statement, as defined in the section called “Specification statements”. The
 specification statement must satisfy the requirements of
 the section called “Forward declaration of functions” above for specification
 of a forward-declared function.
class ConcreteSquareRooter()
 extends AbstractSquareRooter() {
 squareRoot(Float x) => x^0.5;
}

Values

There are two basic kinds of value:
	A reference defines state. It has a persistent
 value, determined at the moment it is specified or assigned.

	A getter defines how a value is evaluated. It
 is defined using a block or lazy specifier, which is executed every time
 the value is evaluated. A getter may have a matching
 setter.

If a value belongs to a type, it is called an attribute.
ValueDeclaration: Annotations ValueHeader (Block | (Specifier | LazySpecifier)? ";")
All value declarations specify the value name.
ValueHeader: ValuePrefix MemberName
A value declaration may specify a type.
ValuePrefix: Type | "value" | "dynamic"
Instead of an explicit return type, a value may be declared using:
	the keyword dynamic, indicating that it is a
 partially typed declaration with no type, or

	the keyword value, indicating that its type
 is inferred.

Note: syntactically a value declaration looks like a function
 declaration with zero parameter lists. It is often helpful, in thinking about the
 syntax and semantics of Ceylon, to take the perspective that a value is a function
 with zero parameter lists, or, alternatively, that a function is a value of type
 Callable.

A value may be variable, in which case it may be freely
 assigned using the assignment and compound assignment operators defined in
 the section called “Operators”. This is the case for a reference annotated
 variable, or for a getter with a matching setter.
References

The lifecycle and scope of the persistent value of a reference depends upon
 where the reference declaration occurs:
	A toplevel reference represents global state associated with the
 lifecyle of a module, as defined by
 the section called “Initialization of toplevel references”.

	A reference declared directly inside the body of a class represents
 a persistent value associated with every instance of the class, as defined
 by the section called “Current instance of a class or interface”. Repeated evaluation
 of the attribute of a particular instance of the class produces the same
 result until the attribute of the instance is assigned a new value.

	A reference declared inside a block represents state associated with
 a frame, that is, with a particular execution of the containing block of
 code, as defined in the section called “Current frame of a block”.

The persistent value of a reference may be specified or initialized as part
 of the declaration of the reference, or via a later specification statement, as
 defined in the section called “Specification statements”, or assignment expression, as
 defined in the section called “Operators”, or, if it is a parameter, by an argument
 to an invocation expression, as defined in the section called “Invocation expressions”.
A reference annotated variable has a persistent value that
 can be assigned multiple times. A reference not annotated variable
 has a persistent value that can be specified exactly once and not subsequently
 modified.
variable Integer count = 0;
shared Decimal pi = calculatePi();
shared Integer[] evenDigits = [0,2,4,6,8];
A reference declaration may have a specifier which specifies its persistent
 value or, in the case of a variable reference, its initial persistent value. The type
 of the specified expression must be assignable to the type of the reference.
If the specified expression has no type, and the declaration occurs within a
 dynamic block, then the specification is not type-checked at
 compile time.
If a reference is a parameter, it must not specify a persistent value.
A reference belonging to a class may be annotated late, in
 which case the initializer of the class is not required to initialize its persistent
 value. Furthermore, a self-reference to an instance being initialized may be
 assigned to the reference.
A reference annotated late may not be initialized or
 assigned a value by the class initializer. A parameter may not be annotated
 late. A reference not belonging to a class may not be annotated
 late.
If a class declares or inherits a variable reference, it
 must (directly or indirectly) extend the class Basic defined in
 ceylon.language.

Getters

A getter implementation may be a block.
shared Float total {
 variable Float sum = 0.0;
 for (li in lineItems) {
 sum += li.amount;
 }
 return sum;
}
Every conditional execution path of the block must end in a
 return directive that specifies an expression assignable
 to the type of the value, or in a throw directive, as
 specified in the section called “Definite return”.
Alternatively, a getter implementation may be a lazy specifier, that
 is, an expression specified using =>. The type of the
 specified expression must be assignable to the type of the value.
Name name => Name(firstName, initial, lastName);

Setters

A setter defines how the value of a getter is assigned.
SetterDeclaration: Annotations "assign" MemberName (Block | LazySpecifier)
The name specified in a setter declaration must be the name of a
 matching getter that directly occurs earlier in the body containing the
 setter declaration. If a getter has a setter, we say that the value is
 variable.
Within the body of the setter, a value reference to the getter
 evaluates to the value being assigned.
A setter implementation may be a block. The block may not contain
 a return directive that specifies an expression.
shared String name { return join(firstName, lastName); }
assign name { firstName=first(name); lastName=last(name); }
Alternatively, a setter implementation may be a lazy specifier.
 The specified expression must be a legal statement.
shared String name => join(n[0], n[1]);
assign name => n = [first(name), last(name)];
A setter may not be annotated shared,
 default or actual. The visibility
 and refinement modifiers of an attribute with a setter are specified by
 annotating the matching getter.

Value type inference

An un-shared value with a block, specifier, or lazy
 specifier may be declared using the keyword value in place of
 the explicit type declaration. Then the value's type is inferred:
	if the value is a reference with a specifier, then the type of the
 value is the type of the specified expression,

	if the value is a getter, and the getter implementation is a lazy
 specifier, then the type of the value is the type of the specified
 expression,

	if the value is a getter, and the getter implementation is a block,
 and the getter contains no return directive, then the
 type of the value is Nothing (this is the case where
 the getter always terminates in a throw directive), or

	otherwise, the type of the value is the union of all returned
 expression types of return directives of the getter
 body.

value names = List<String>();
variable value count = 0;
value name => Name(firstName, initial, lastName);

Forward declaration of values

The declaration of a reference may be separated from the specification
 or initialization of its persistent value. The declaration of a getter may be
 separated from the specification of its implementation. If a value declaration
 does not have a specifier, lazy specifier, or a block, and is not annotated
 formal, it is a forward-declared
 value.
A forward-declared value may later be specified using a specification
 statement, as defined in the section called “Specification statements”.
	The specification statement for a forward-declared getter is
 a lazy specification statement with no parameter list, and a specified
 expression assignable to the type of the value.

	The specification statement for a forward-declared reference is
 an ordinary specification statement with a specified expression
 assignable to the type of the value.

String greeting;
switch (language)
case (en) {
 greeting = "Hello";
}
case (es) {
 greeting = "Hola";
}
else {
 throw LanguageNotSupported();
}
print(greeting);
Every forward-declared value must explicitly specify a type. It may
 not be declared using the keyword value.
A toplevel value may not be forward-declared. An attribute of an
 interface may not be forward-declared. An attribute annotated
 default may not be forward-declared.
A forward-declared getter may not have a setter.
If a shared value is forward-declared, its
 implementation must be definitely specified by all conditional paths in the
 class initializer.

Formal and default attributes

If a value declaration does not have a specifier, lazy specifier, or
 a block, and is annotated shared, and is a member of
 either:
	an interface, or

	a class annotated abstract or
 formal,

then the value declaration may be annotated formal,
 and is called a formal attribute, or, sometimes, an
 abstract attribute.
shared formal variable String firstName;
An attribute which is not annotated formal is called
 a concrete attribute.
If a concrete attribute is annotated shared, and is
 a member of a class or interface, then it may be annotated default
 and is called a default attribute.
shared default String greeting = "Hello";
An attribute annotated formal may not specify an
 implementation (a specifier, lazy specifier, or a block). Nor may there be
 a setter for a formal attribute.
An attribute annotated default must specify an
 implementation (a specifier, lazy specifier, or a block), and may not be
 forward-declared.
Every formal attribute must explicitly specify a type.
 It may not be declared using the keyword value.
A toplevel attribute may not be annotated formal or
 default.
An un-shared attribute may not be annotated
 formal or default.

Attribute refinement

Ceylon allows attributes to be refined, just like methods. This helps
 eliminate the need for Java-style getter and setter methods.
	A class or interface may refine any formal
 or default attribute it inherits, unless it inherits
 a non-formal non-default
 attribute that refines the attribute.

	A concrete class must refine every formal
 attribute it inherits, unless it inherits a non-formal
 attribute that refines the attribute.

Any non-variable attribute may be refined by a reference or getter. A
 variable attribute may be refined by a variable refernce
 or by a getter and setter pair.
TODO: are you allowed to refine a getter or setter without also
 refining its matching setter or getter?

An attribute of a subtype refines an attribute
 of a supertype if the attribute of the supertype is shared
 and the two attributes have the same name. The first attribute is called the
 refining attribute, and the second attribute is called
 the refined attribute.
Then, given the refined realization of the attribute it refines, as
 defined in the section called “Realizations”, the refining attribute must:
	be variable, if the attribute it refines is variable, and

	have exactly the same type as the
 realization, if the attribute it refines is variable,

	have a type that is assignable to the type of the refined
 schema, if the attribute it refines is not variable, or

	if it has no type, the refined attribute must also have no
 type.

Furthermore:
	the refining attribute must be annotated actual,
 and

	the refined attribute must be annotated formal
 or default.

If an attribute is annotated actual, it must
 refine some attribute defined by a supertype.
An attribute may not, directly or indirectly, refine two different
 attributes not themselves annotated actual.
A non-variable attribute may be refined by a variable attribute.
TODO: Is that really allowed? It could break the superclass.
 Should we say that you are allowed to do it when you refine an interface
 attribute, but not when you refine a superclass attribute?

Then evaluation and assignment of the attribute is polymorphic, and
 the actual attribute evaluated or assigned depends upon the concrete type
 of the class instance.
shared abstract class AbstractPi() {
 shared formal Float pi;
}
class ConcretePi()
 extends AbstractPi() {
 shared actual Float pi = calculatePi();
}
Alternatively, a subtype may refine an attribute using a specification
 statement, as defined in the section called “Specification statements”. The
 specification statement must satisfy the requirements of
 the section called “Forward declaration of values” above for specification of a
 forward-declared attribute.
class ConcretePi()
 extends AbstractPi() {
 pi = calculatePi();
}

Constructors

A constructor is a callable block of code that
 produces a new instance of the class to which the constructor belongs.
 Every constructor must occur directly in the initializer section of a class.
 A constructor may have parameters. Every constructor implementation is a
 block of code.
ConstructorDeclaration: Annotations ConstructorHeader Block
The are two basic kinds of constructor:
	A callable constructor declaration
 specifies the constructor name, if any, and exactly one parameter
 list.

	A value constructor declaration
 specifies just the constructor name.

Any constructor declaration may, optionally, have an extends
 clause.
A constructor name must be an initial lowercase identifier.
ConstructorHeader: ValueConstructorHeader | CallableConstructorHeader
CallableConstructorHeader: "new" MemberName? Parameters ExtendedType?
ValueConstructorHeader: "new" MemberName ExtendedType?
If two constructors belong to the same class, then the constructors
 must have distinct names. A class may have at most one constructor with no
 name.
If a constructor has no name, then the constructor is called the
 default constructor of the class to which it belongs.
 The default constructor is always a callable constructor.
Every default constructor must be annotated shared.
Note: from the point of view of a client, a class with a default
 constructor and no named constructors is indistinguishable from a class with an
 initializer parameter list.

shared class Point {
 shared Float x;
 shared Float y;

 shared new origin {
 x = 0.0;
 y = 0.0;
 }
 shared new cartesian(Float x, Float y) {
 this.x = x;
 this.y = y;
 }
 shared new polar(Float r, Float theta) {
 this.x = r * cos(theta);
 this.y = r * sin(theta);
 }
 shared new (Float x, Float y)
 extends cartesian(x, y) {}

 string => "(``x``, ``y``)";
}
A class with an initializer parameter list may not declare constructors.
A generic class may not declare value constructors.
A class nested directly inside an interface may not declare value constructors.
A member class annotated formal, default,
 or actual may not declare constructors.
Note: in a future release of the language, we might relax this
 restriction, and simply require that every actual class
 provide a constructor with the same signature as the constructor of its
 superclass.

A constructor annotated sealed may not be invoked
 outside the module in which it is defined.
Callable type of a constructor

For a callable constructor, the callable type
 of the constructor captures the type of the class, and parameter types of
 the constructor. The callable type is T(*P), where
 T is the applied type formed by the class with its own
 type parameters as type arguments, and P is the type of
 the parameter list of the constructor.
A constructor of an abstract class is not
 callable, except from the extends clause of a subclass,
 or the class specifier of a class alias.
A partial constructor is not callable, except from the
 extends clause of another constructor of the same
 class.
The type of a value constructor is simply T,
 where T is the class to which it belongs.

Partial constructors

A callable constructor annotated abstract is
 called a partial constructor.
A partial constructor may not be annotated shared.
A default constructor may not be annotated abstract.
A value constructor may not be annotated abstract.

Constructor delegation

Every constructor of any class which does not directly extend
 Basic defined in ceylon.language
 must explicitly delegate, as defined in the section called “Extension”,
 to either:
	a different callable constructor of the same class,
 specifying arguments for the parameters of the constructor,
 or,

	a callable constructor of its immediate superclass,
 specifying arguments for the parameters of the superclass
 constructor, if the superclass declares constructors, or,
 otherwise

	the initializer of its immediate superclass, specifying
 arguments for the initializer parameters, if the superclass
 has an initializer parameter list.

If the constructor of a class which directly extends
 Basic does not have an extends
 clause, the constructor implicitly delegates to the initializer of
 Basic.

Chapter 5. Statements, blocks, and control structures

Function, value, and class bodies contain procedural code that is executed
 when the function is invoked, the value evaluated, or the class instantiated. The
 code contains expressions and control directives and is organized using blocks
 and control structures.
Note: the Ceylon language has a recursive block structure—statements
 and declarations that are syntactically valid in the body of a toplevel declaration
 are, in general, also syntactically valid in the body of a nested declaration or
 of a control structure, and vice-versa.

Block structure and references

A body is a block, defined in
 the section called “Blocks and statements”, class body, defined in
 the section called “Classes”, interface body, defined in
 the section called “Interfaces”, or comprehension clause, defined in
 the section called “Comprehensions”. Every body (except for a comprehension clause)
 is list of semicolon-delimited statements, control structures, and declarations,
 surrounded by braces. Some bodies end in a control directive. Every program
 element in the list is said to directly occur in the body.
 A program element directly occurs earlier than a second
 program element if both program elements directly occur in a body and the first
 program element occurs (lexically) earlier in the list than the second program
 element.
A program element (indirectly) occurs in a body if:
	the program element directly occurs in the body, or

	the program element indirectly occurs inside the body of a
 declaration or control structure that occurs directly in the body.

We sometimes say that the body contains the program
 element if the program element (indirectly) occurs in the body.
A program element (indirectly) occurs earlier than a
 second program element if:
	the two program elements both directly occur in the same body, and
 the second program element occurs after the first program element, or

	the second program element indirectly occurs inside the body of a
 declaration or control structure, and the first program element directly
 occurs earlier than the declaration or control structure.

Then we also say that the second program element (indirectly) occurs
 later than the first. The set of program elements that occur later than a
 program element is sometimes called the lexical scope of the
 program element.
A program element sequentially occurs in a body if:
	the program element directly occurs in the body, or

	the program element sequentially occurs inside the body of a control
 structure or constructor that occurs directly in the body.

A program element sequentially occurs earlier than a
 second program element if:
	the two program elements both directly occur in the same body, and
 the second program element occurs after the first program element, or

	the second program element sequentially occurs inside the body of a
 control structure or constructor, and the first program element directly
 occurs earlier than the control structure or constructor.

If a program element sequentially occurs earlier than a second program element,
 the sequence of statements from the first program element to the
 second program element comprises:
	the sequence of statements that occur directly in the body in which
 the first program element directly occurs, beginning from the first program
 element and ending with the second program element, if the second program
 element occurs directly in the same body as the first program element, or

	the sequence of statements that occur directly in the body in which
 the first program element directly occurs, beginning from the first program
 element and ending with the control structure or constructor in whose body
 the second program element sequentially occurs, followed by the sequence of
 statements from the first statement of the declaration whose body contains
 the second program element to the second program element itself, otherwise.

Declaration name uniqueness

A program element is contained within the namespace
 of a declaration if either:
	the declaration is a toplevel declaration, and the program
 element is a toplevel declaration of the same package,

	the declaration directly occurs in a body, the program
 element occurs in the same body, and the declaration sequentially
 occurs earlier than the program element,

	the declaration is a parameter or type parameter, and the
 program element sequentially occurs in the body of the parameterized
 declaration, or

	the program element is a control structure variable or
 iteration variable of a control structure that sequentially occurs
 in the namespace of the declaration.

The namespace of a declaration may not contain a second declaration with
 the same name. For example, the following is illegal:
function fun(Float number) {
 if (number<0.0) {
 Float number = 1.0; //error
 ...
 }
 ...
}
As an exception to this rule, the namespace of a declaration annotated
 native may contain a second declaration with the same name
 if:
	the second declaration has exactly the same schema, as defined
 in the section called “Types”,

	the second declaration is also annotated native,
 and

	the two native annotations have distinct
 arguments for the backend parameter.

A class or interface may not inherit a declaration with the same name as
 a declaration it contains unless either:
	the contained declaration directly or indirectly refines the
 inherited declaration,

	the contained declaration is not shared, or

	the inherited declaration is not shared.

A class or interface may not inherit two declarations with the same name
 unless either:
	the class or interface contains a declaration that directly or
 indirectly refines both the inherited declarations (in which case both
 the inherited declarations directly or indirectly refine some member
 of a common supertype, as required by the section called “Member class refinement”,
 the section called “Attribute refinement”, and
 the section called “Method refinement”),

	one of the inherited declarations directly or indirectly refines
 the other inherited declaration, or

	at least one of the inherited declarations is not
 shared.

Scope of a declaration

The scope of a declaration is governed by the body or package in which it
 occurs. A declaration is in scope at a program element if
 and only if either:
	the declaration is a parameter or type parameter of a declaration
 whose body contains the program element,

	the declaration is a control structure variable or iteration
 variable belonging to a block of a control structure that contains the
 program element,

	the program element belongs to or is contained in the body of the
 declaration itself,

	the program element belongs to or is contained in the body of a
 class or interface which inherits the declaration,

	the declaration directly occurs in a body containing the program
 element,

	the declaration is imported into the toplevel namespace of the
 compilation unit containing the program element, or into the local
 namespace of a body containing the program element, as defined by
 the section called “Imports”, and is visible to the program element,
 as defined below in the section called “Visibility”, or

	the declaration is a toplevel declaration in the package containing
 the program element.

Where:
	A control structure variable or iteration variable belongs
 to a block of a control structure if the block immediately follows the declaration
 of the variable.

	A program element belongs to a declaration if it occurs
 in the extends, satisfies, of,
 or given clause of the declaration.

Furthermore:
	A condition variable of a condition belonging to a condition list is
 in scope in any condition of the same condition list that occurs lexically
 later.

	A resource expression variable of a try statement
 is in scope in any resource expression of the same resource expression list
 that occurs lexically later.

	An iteration variable or condition variable of a comprehension is in
 scope in any clause of the comprehension that occurs lexically later, since
 comprehension clauses are viewed as nested bodies.

And finally, there are special rules for annotation lists, defined in
 the section called “Annotation lists”:
	An annotation argument list belongs to the annotated declaration.

	An annotation name is considered to occur directly in the compilation
 unit containing the program element.

Note: if no reference to an un-shared declaration
 occurs within the scope of the declaration, a compiler warning is produced.

Visibility

Classes, interfaces, functions, values, aliases, and type parameters
 have names. Occurrence of a name in code implies a hard dependency from the
 code in which the name occurs to the schema of the named declaration. We say
 that a class, interface, value, function, alias, or type parameter is
 visible to a certain program element if its name may
 occur in the code that belongs to that program element.
The visibility of a declaration depends upon where it occurs, and upon
 whether it is annotated shared. A toplevel or member
 declaration may be annotated shared:
	If a toplevel declaration is annotated shared,
 it is visible wherever the package that contains it is visible.
 Otherwise, a toplevel declaration is visible only to code in the
 package containing its compilation unit.

	If a member declaration is annotated shared,
 it is visible wherever the class or interface that contains it is
 visible. Otherwise, a declaration that occurs directly inside a class
 or interface body is visible only inside the class or interface
 declaration.

Note: the Ceylon compiler enforces additional visibility
 restrictions for members of Java classes, since Java's visibility modifiers
 can express restrictions that cannot be reproduced within Ceylon's visibility
 model. These restrictions are outside the scope of this specification.

A type parameter or a declaration that occurs directly inside a block
 (the body of a function, getter, setter, or control structure) may not be
 annotated shared.
	A type parameter is visible only inside the declaration to which
 it belongs.

	A declaration that occurs directly inside a block is visible
 only inside the block.

TODO: Should we allow you to limit the effect of the
 shared annotation by specifying a containing program
 element or package?

We say that a type is visible to a certain
 program element if it is formed from references to classes, interfaces,
 type parameters, and type aliases whose declarations are visible to the
 program element. For shared declarations:
	The type of a value must be visible everywhere the value
 itself is visible.

	The return type of a function must be visible everywhere
 the function itself is visible.

	The satisfied interfaces of a class or interface must be
 visible everywhere the class or interface itself is visible.

	The superclass of a class must be visible everywhere the
 class itself is visible.

	The aliased type of a class alias, interface alias, or
 type alias must be visible everywhere the alias itself is
 visible.

Hidden declarations

If two declarations with the same name or imported name, as defined in
 the section called “Imported name”, are both in scope at a certain program element,
 then one declaration may hide the other declaration.
	If an inner body is contained (directly or indirectly) in an outer
 body, then a declaration that is in scope in the inner body, but is not
 in scope in the outer body, hides a declaration that is in scope in the
 outer body. In particular, a declaration inherited by a nested class or
 interface hides a declaration of the containing body.

	An un-shared declaration occurring directly in
 the body of a class containing the program element, or imported into the
 local namespace of the class body, hides a declaration inherited by the
 class.

	An actual declaration hides the declaration it
 refines.

	A declaration occurring in a body containing the program element, or
 imported into the local namespace of a body containing the program element,
 hides a declaration imported into the toplevel namespace of the compilation
 unit containing the program element or implicitly imported from the module
 ceylon.language.

	A toplevel declaration of the package containing the program element
 hides a declaration implicitly imported from the module
 ceylon.language.

	A declaration imported into the toplevel namespace of the compilation
 unit containing the program element, or into the local namespace of a body
 containing the program element, hides a toplevel declaration of
 the package containing the compilation
 unit in which the program element occurs.

	A declaration explicitly imported by name into a namespace containing
 the program element hides a declaration imported by wildcard into the same
 namespace.

For example, the following code is legal:
class Person(name) {
 String name;
 shared String lowerCaseName {
 String name = this.name.lowercased;
 return name;
 }
}
As is this code:
class Point(x, y) {
 shared Float x;
 shared Float y;
}

class Complex(Float x, Float y=0.0)
 extends Point(x, y) {}
When a member of a class is hidden by a nested declaration, the member
 may be accessed via the self reference this, defined in
 the section called “this”, or via the outer instance reference outer,
 defined in the section called “outer”.
shared class Item(name) {
 variable String name;
 shared void changeName(String name) {
 this.name = name;
 }
}
class Catalog(name) {
 shared String name;
 class Schema(name) {
 shared String name;
 Catalog catalog => outer;
 String catalogName => outer.name;
 class Table(name) {
 shared String name;
 Schema schema => outer;
 String schemaName => outer.name;
 String catalogName => catalog.name;
 }
 }
}
When a toplevel declaration of a package is hidden by another declaration,
 the toplevel declaration may be accessed via the containing package reference
 package, as defined in
 the section called “Unqualified reference resolution”.
Integer n => 0;
Integer f(Integer n) => n+package.n;

References and block structure

A declaration may be in scope at a program element, but not
 referenceable at the program element. A declaration
 is referenceable at a program element if the declaration is in scope at
 the program element and either:
	the declaration is imported from a different compilation
 unit,

	the program element occurs within the lexical scope of the
 declaration,

	the declaration is a parameter and the program element occurs
 within the extends clause of the declaration it
 parameterizes, or

	the declaration does not directly occur in a block, nor in
 the initializer section of a class body.

Note that these rules have very different consequences for:
	a declaration that occurs in a block, as specified in
 the section called “Blocks and statements”, or in an class initializer section,
 as specified in the section called “Initializer section”, and

	a toplevel declaration, as specified in
 the section called “Toplevel and nested declarations”, or a declaration that occurs in a
 class declaration section, as specified in the section called “Declaration section”,
 or interface body, as specified in the section called “Interface bodies”.

Declarations that occurs in a block or class initializer section are interspersed
 with procedural code that initializes references. Therefore, a program element in a
 block or initializer may not refer to a declaration that occurs later in the block or
 class body. This restriction does not apply to declarations that occur in an interface
 body or class declaration section. Nor does it apply to toplevel declarations, which
 are not considered to have a well-defined order.
The following toplevel function declarations, belonging to the same package,
 are legal:
Float x => y;
Float y => x;
This code is not legal, since the body of a function is an ordinary block:
Float->Float xy() {
 Float x => y; //error: y is not referenceable
 Float y => x;
 return x->y;
}
This code is not legal, since all three statements occur in the initializer
 section of the class body:
class Point() {
 Float x => y; //error: y is not referenceable
 Float y => x;
 Float->Float xy = x->y;
}
However, this code is legal, since the statements occur
 in the declaration section of the class body:
class Point() {
 Float x => y;
 Float y => x;
}
Likewise, this code is legal, since the statements occur in an interface
 body:
interface Point {
 Float x => y;
 Float y => x;
}
If a declaration is annotation restricted, and a
 program element does not occur in either:
	the same package as the declaration, or

	one of the modules specified as arguments to the
 restricted annotation of the declaration,

then the declaration is not referenceable at the program element.

Type inference and block structure

A value declared using the keyword value or a
 function declared using the keyword function may be
 in scope at a program element, but its type may not be
 inferable, as defined by
 the section called “Type inference”, from the point of view of that program
 element.
The type of a value or function declared using the keyword
 value or function is inferable
 to a program element if the declaration is in scope at the program
 element and the program element occurs within the lexical scope of the
 declaration.
Note: the type of a value or function declared using
 the keyword value or function is
 not inferable within the body of the value or function
 itself.

For any other declaration, including any declaration which
 explicitly specifies its type, the type is considered inferable to a
 program element if the declaration is in scope at the program
 element.
The following code is not legal:
interface Point {
 value x => y; //error: type of y is not inferable
 value y => x;
}
However, this code is legal:
interface Point {
 value x => y;
 Float y => x;
}

Unqualified reference resolution

An unqualified reference is:
	the type name in an unqualified type declaration or type
 argument, as defined by the section called “Type expressions”, for
 example String and Sequence
 in Sequence<String>,

	the value, function, constructor, or type name in a base
 expression, as defined by the section called “Base expressions”,
 for example
 counter in counter.count,
 entries and people in
 entries(people*.name), or
 Entry, name, and
 item in Entry(name,item),
 or

	the type name in an unqualified type in a static expression,
 as defined by the section called “Static expressions”, or constructor
 expression, as defined by the section called “Constructor expressions”,
 for example Sequence in
 Sequence.iterator.

If a program element contains an unqualified reference:
	there must be at least one declaration in scope at the program
 element with the given name, or aliased to the given name by an
 import statement, as defined in
 the section called “Imported name”, and

	if multiple declarations with the given name or aliased to the
 given name are in scope at the program element where the given name
 occurs, then it is guaranteed by the type system and
 the section called “Declaration name uniqueness” that there is exactly one
 such declaration which is not hidden by any other declaration.

There are two exceptions to the above rules.
	If the expression or type expression begins with the qualifier
 keyword package, then there must be a toplevel
 declaration with the given name defined in the package to which the
 compilation unit belongs.

	If the expression or type expression occurs in an annotation
 list, as defined by the section called “Annotation lists”, then there
 must be a toplevel declaration with the given name defined in the
 package to which the compilation unit belongs, or imported by a
 toplevel import statement of the compilation
 unit.

Then the reference is to this unique unhidden declaration, and:
	the declaration must be referenceable at the program element,

	the type of the declaration must be inferable to the program
 element, and

	if the declaration is forward-declared, it must be definitely
 initialized at the program element.

As a special exception to the above, if there is no declaration with the
 given name or imported name in scope at the program element and the program
 element occurs inside a dynamic block, then the unqualified
 reference does not refer to any statically typed declaration.
If an unqualified reference refers to a member declaration of a type, then
 there is a unique inheriting or declaring class or interface
 for the unqualified reference, that is, the unique class or interface in whose
 body the unqualified reference occurs, and which declares or inherits the member
 declaration, and for which the member is not hidden at the program element where
 the unqualified reference occurs.

Qualified reference resolution

A qualified reference is:
	the type name in a qualified type declaration or type argument,
 as defined by the section called “Type expressions”, for example
 Buffer in
 BufferedReader.Buffer,

	the value, function, or type name in a member expression, as
 defined by the section called “Member expressions”, for example
 count in counter.count,
 split in text.split(), or
 Buffer in br.Buffer(),

	the constructor name in a constructor expression, as
 defined by the section called “Constructor expressions”, or

	the type name in a qualified type in a static expression, as
 defined by the section called “Static expressions”, for example
 Buffer in
 BufferedReader.Buffer.size, or the member name
 in a static expression, for example iterator in
 Sequence.iterator, or size in
 BufferedReader.Buffer.size.

Every qualified reference has a qualifying type:
	For a type declaration, the qualifying type is the fully
 qualified type that qualifies the type name.

	For a value reference or callable reference, the
 qualifying type is the type of the receiver expression.

	For a constructor reference, the qualifying type is the
 type of the qualifying base or member expression.

	For a static reference, the qualifying type is the fully
 qualified type that qualifies the type or member name.

A qualified reference may not have Nothing as the
 qualifying type.
If a program element contains a qualified reference:
	the qualifying type must have or inherit at least one member
 or nested type with the given name or aliased to the given imported
 name, as defined in the section called “Imported name”, which is visible
 at the program element, and

	if there are multiple visible members with the given name or
 imported name, then it is guaranteed by the type system and
 the section called “Declaration name uniqueness” that there is exactly
 one such member which is not refined by another member, except

	if the qualifying type inherits a class or interface that
 contains the program element, and an un-shared
 declaration contained directly in the body of this class or
 interface has the same name as a shared member
 of the qualifying type, in which case the un-shared
 declaration hides the shared member, or

	if the qualifying type is an intersection type, in which case
 there may be multiple members which are not refined by another
 member, but where there is exactly one such member that is refined
 by each of these members, but is not refined by another member that
 is refined by all of these members, except

	in the case of certain pathological intersection types, where
 two of the intersected types declare distinct members with the same
 name, that do not refine any member of a common supertype (in which
 case what we actually have are disjoint types that are nevertheless
 not considered provably disjoint within the rules of the typesystem),
 and in this case the qualified reference is considered illegal.

Then the reference is to the unique member or nested class. If the
 program element is contained in the body of a class or interface, and the
 member declaration directly occurs in the body of the class or interface,
 and the qualified reference is a value reference or callable reference, and
 the receiver expression is a self reference to the instance being
 initialized, then:
	the member declaration must be referenceable at the program
 element,

	the type of the member must be inferable to the program
 element, and

	if the member declaration is forward-declared, it must be
 definitely initialized at the program element.

As a special exception to the above, if the program element occurs inside
 a dynamic block, and the the receiver expression has no type,
 then the qualified reference does not refer to any statically typed declaration.

Patterns and variables

Destructuring statements, assertions, and some control structures allow inline
 declaration of a variables, which often occur as part of a more
 complex pattern.
Note: the use of the term variable here does not imply any connection
 to the variable annotation for values. A variable in a destructuring
 statement, assertion, or control structure may not be assigned using a specification
 or assignment statement.

Variables

A variable is a streamlined form of reference declaration, as defined by
 the section called “References”.
TypedVariable: Type MemberName
In most cases, the explicit type be omitted.
Variable: (Type | "value")? MemberName
If the explicit type is missing from the declaration, the type of the variable
 is inferred, according to rules that depend upon the control structure to which
 the variable belongs.
A variable declared by a destructuring statement is a reference scoped to the
 body in which the destructuring statement occurs.
A variable declared by an assertion is a reference scoped to the body in which
 the assert statement occurs.
A variable declared by a control structure is a reference scoped to the block
 that immediately follows the variable declaration:
	For a variable in an if condition, the scope of the
 variable is the if block.

	For a variable in a while condition, the scope of the
 variable is the while block.

	For a variable in a for iterator, the scope of the
 variable is the for block.

	For a variable in a try clause, the scope of the
 variable is the try block.

	For a variable in a catch clause, the scope of the
 variable is the catch block.

	For a variable in an assert statement, the scope of the
 variable is the body containing the assert statement.

Patterns

An expression whose type is an instantiation of Sequential,
 Sequence, Tuple, or Entry
 may be assigned to a pattern. The type of an expression
 assigned to a pattern is called the patterned type.
TODO: actually, the following section does not do justice to
 the compiler, which can actually handle subtypes of these types, including
 type parameters upper bounded by these types.

Patterns are formed from:
	pattern variables,

	tuple patterns, and

	entry patterns.

Pattern: Variable | TuplePattern | EntryPattern
Note: in a future release of the language, we might introduce
 a more general pattern matching system, allowing pattern matching against
 arbitrary classes.

Pattern variables

A pattern variable is just a variable, as
 defined above, that occurs in a pattern.
If the variable has an explicit type, then the patterned type
 must be assignable to this type. Otherwise, the type of the variable
 is inferred to be the patterned type.
A variadic pattern variable is indicated
 with an asterisk.
VariadicVariable: UnionType? "*" MemberName
Variadic pattern variables only occur in tuple patterns.

Tuple patterns

A tuple pattern comprises a list of element
 patterns, ending in, optionally, a variadic pattern
 variable called a variadic element pattern.
 Tuple patterns are enclosed in brackets.
TuplePattern: "[" (Pattern ",")* (Pattern | VariadicVariable) "]"
The patterned type must be an instantiation of the type
 Tuple, Sequential, or
 Sequence in ceylon.language.
 Then:
	If the tuple pattern has only one element pattern,
 and it is variadic, then the patterned type of this variadic
 element pattern is just the patterned type of the surrounding
 tuple pattern.

	Or, if the tuple pattern has only one element pattern,
 and it is not variadic, then the patterned type must be a
 single-element instantiation [T] of
 Tuple, and the patterned type of the
 element pattern is T.

	Otherwise, if the patterned type is an instantiation
 Tuple<T,F,R> of Tuple,
 then the patterned type of the first element pattern is
 F, and the patterned types of the
 remaining element patterns, if any, are determined by
 forming a new tuple pattern with patterned type
 R by removing the first element pattern
 from the list of element patterns.

	Or, if the patterned type is an instantiation
 [T+] of Sequence,
 then there must be exactly two element patterns, and the
 second element pattern must be variadic. Then the patterned
 type of the first element pattern is T,
 and the patterned type of the second element pattern is
 [T*].

value [x, y, z] = [1.0, 2.0, 0.0];
value [first, *rest] = sequence;
Note: Ceylon does not support parallel assignment
 statements of form value x, y, z = 1.0, 2.0, 0.0;
 since the infix = symbol has a higher precedence
 than the comma , throughout the language.

Entry patterns

An entry pattern comprises a key pattern,
 followed by an item pattern.
EntryPattern: KeyOrItemPattern "->" KeyOrItemPattern
KeyOrItemPattern: Variable | TuplePattern
The patterned type must be an instantiation
 K->V of the type Entry in
 ceylon.language. Then:
	the patterned type of the key pattern is
 K, and

	the patterned type of the item pattern is
 V.

value name->[lat,long] = observatory;

Blocks and statements

A block is list of semicolon-delimited statements,
 control structures, and declarations, surrounded by braces. A block may begin
 with a list of local import statements, as defined in
 the section called “Imports”.
Block: "{" Import* (Declaration | Statement)* "}"
A statement is an assignment or specification, an
 invocation of a method, an instantiation of a class, a destructuring statement,
 a control structure, a control directive, or an assertion.
Statement: ExpressionStatement | Specification | Destructure | Directive | ControlStructure | Dynamic
A statement or declaration contained in a block may not evaluate a value,
 invoke a function, instantiate a class, or extend a class whose declaration
 occurs later in the block.
Expression statements

Only certain expressions are valid statements:
	assignment,

	prefix or postfix increment or decrement,

	invocation of a method,

	instantiation of a class.

ExpressionStatement: (Assignment | IncrementOrDecrement | Invocation) ";"
For example:
x += 1;
x++;
print("Hello");
Main(process.arguments);

Control directives

A control directive statement ends execution of the
 current block and forces the flow of execution to resume in some outer scope.
 They may only occur as the lexically last statement of a block.
There are four control directives:
	the return directive—to return a value from
 a getter or non-void function or terminate execution of a
 setter, class initializer, or void method,
	the break directive—to terminate a loop,
	the continue directive—to jump to the next
 iteration of a loop, and
	the throw directive—to raise an exception.

Directive: (Return | Throw | Break | Continue) ";"
For example:
throw Exception();
return x+y;
break;
continue;
The return directive must sequentially occur in the body
 of a function, getter, setter, or class initializer. In the case of a
 setter, class initializer, or void function, no expression may
 be specified. In the case of a getter or non-void function, an
 expression must be specified. The expression type must be assignable to the return
 type of the function or the type of the value. When the directive is executed, the
 expression is evaluated to determine the return value of the function or getter.
Return: "return" Expression?
If the specified expression has no type, or if the function or getter has
 no type, and the directive occurs within a dynamic block, then
 the directive is not type-checked at compile time.
Note: a return statement returns only from the
 innermost function, getter, setter, or class initializer, even in the case of a
 nested or anonymous function. There are no "non-local returns" in the language.

The break directive must sequentially occur in the body
 of a loop.
Break: "break"
The continue directive must sequentially occur in the body
 of a loop.
Continue: "continue"
A throw directive may appear anywhere and may specify an
 expression, whose type must be a subtype of type Throwable
 defined in ceylon.language. When the directive is executed, the
 expression is evaluated and the resulting exception is thrown. If no expression is
 specified, the directive is equivalent to throw Exception().
Throw: "throw" Expression?
If the specified expression has no type, and the directive occurs within a
 dynamic block, then the directive is not type-checked at compile
 time.

Specification statements

A specification statement may specify or initialize the
 persistent value of a forward-declared reference, or specify the implementation of
 a forward-declared getter or function.
Specification: ValueSpecification | LazySpecification
The persistent value of a forward-declared reference or the implementation
 of a forward-declared function may be specified by a value specification
 statement. The value specification statement consists of an unqualified
 value reference, or a qualified value reference where the receiver expression is
 this, and an ordinary = specifier. The value
 reference must refer to a declaration which sequentially occurs earlier in the body
 in which the specification statement occurs.
ValueSpecification: ("this" ".")? MemberName Specifier ";"
The type of the specified expression must be assignable to the type of the
 reference, or to the callable type of the function.
If the specified expression has no type, or if the reference or function has
 no type, and the specification occurs within a dynamic block,
 then the specification is not type-checked at compile time.
String greeting;
if (exists name) {
 greeting = "hello ``name``";
}
else {
 greeting = "hello world";
}
String process(String input);
if (normalize) {
 process = String.normalized;
}
else {
 process = (String s) => s;
}
Note: there is an apparent ambiguity here. Is the statement
 x=1; a value specification statement, or an assignment
 expression statement? The language resolves this ambiguity by favoring the
 interpretation as a specification statement whenever that interpretation is
 viable. This is a transparent solution, since it accepts strictly more code
 than the alternative interpretation, and for ambiguous cases the actual
 semantics are identical between the two interpretations.

The implementation of forward-declared getter or function may be
 specified using a lazy specification statement. The
 specification statement consists of either:
	an unqualified value reference, or a qualified value reference
 where the receiver expression is `this`, and a lazy
 => specifier, or

	a unqualified callable reference, or a qualified value reference
 where the receiver expression is `this`, one or more parameter lists,
 and a lazy specifier.

The value reference or callable reference must refer to a declaration
 which sequentially occurs earlier in the body in which the specification
 statement occurs.
A callable reference followed by a parameter list is itself considered
 a callable reference, called a parameterized reference.
 If the parameter list has type P then the callable reference
 must have the exact type R(*P) for some type
 R. Then the type of the parameterized reference is
 R.
ParameterizedReference: ("this" ".")? MemberName Parameters+
Thus, the specification statement consists of a parameterized reference
 followed by a lazy specifier.
LazySpecification: (MemberName | ParameterizedReference) LazySpecifier ";"
The type of the specified expression must be assignable to the type of
 the parameterized reference, or to the type of the value reference.
String greeting;
if (exists name) {
 greeting => "hello ``name``";
}
else {
 greeting => "hello world";
}
String process(String input);
if (normalize) {
 process(String input) => input.normalized;
}
else {
 process(String s) => s;
}

Destructuring statements

A destructuring statement assigns an expression
 to a pattern, as defined above in the section called “Patterns”.
Destructure: "value" (TuplePattern | EntryPattern) Specifier ";"
The type of the specified expression is the patterned type of the
 tuple or entry pattern.

Dynamic blocks

A dynamic block allows interoperation with
 dynamically typed native code.
Dynamic: "dynamic" Block
Inside a dynamic block an expression may have
 no type, as specified in Chapter 6, Expressions.
An expression with no type:
	may be specified or assigned to a typed value, as defined
 in the section called “Specification statements”,

	may be passed as the argument of a typed parameter in an
 invocation expression, as defined in
 the section called “Direct invocations”,

	may be the invoked expression of an invocation, as defined
 in the section called “Invocation expressions”,

	may be returned by a typed function or getter, or
 thrown as an exception, as defined in
 the section called “Control directives”,

	may be the operand of an operator expression, as defined in
 the section called “Compound expressions”, or

	may be the subject of a control structure condition, as
 defined in the section called “Conditions”, a
 switch, as defined in the section called “switch/case/else”,
 or a for iterator, as defined in the section called “for/else”.

Furthermore:
	a qualified or unqualified reference may not refer to a
 statically typed declaration, as defined by
 the section called “Unqualified reference resolution” and
 the section called “Qualified reference resolution”.

These situations result in dynamic type checking,
 as defined in the section called “Dynamic type checking”, since the usual static
 type checks are impossible.
Note: within a dynamic block, Ceylon behaves like
 a language with optional static typing, performing static type checks where possible,
 and dynamic type checking where necessary.

Definite return

A sequence of statements may definitely return.
	A sequence of statements definitely returns if it ends in a
 return or throw directive, or
 in a control structure that definitely returns, or contains an
 assertion with a condition list that is never satisfied.

	A body definitely returns if it contains a list of statements
 that definitely returns.

	An if conditional definitely returns if it has
 an else block and both the if
 and else blocks definitely return, or if its
 condition list is always satisfied and the if block
 definitely returns, or if its condition list is never satisfied and it
 has an else block that definitely returns.

	A switch conditional definitely returns if all
 case blocks definitely return and the else
 block, if any, definitely returns.

	A for loop definitely returns if it has an
 else block that definitely returns, and there is
 no break directive in the for
 block, or if the iterated expression type is a nonempty type, and
 the for block definitely returns.

	A while loop definitely returns if its
 condition list is always satisfied and the while
 block definitely returns.

	A try/catch exception manager definitely
 returns if the try block definitely returns and
 all catch blocks definitely return or if the
 finally block definitely returns.

The body of a non-void method or getter must definitely
 return.
A body may not contain an additional statement, control structure, or
 declaration following a sequence of statements that definitely returns. Such a
 statement, control structure, or declaration is considered
 unreachable.

Definite initialization

A sequence of statements may definitely initialize a
 forward-declared declaration.
	A sequence of statements definitely initializes a declaration if
 one of the statements is a specification statement or assigment
 expression for the declaration or a control structure that definitely
 initializes the declaration, or if the sequence of statements ends in
 a return or throw directive, or
 contains an assertion with a condition list that is never satisfied.

	An if conditional definitely initializes a
 declaration if it has an else block and both the
 if and else blocks definitely
 initialize the declaration, of if its condition list is always satisfied
 and the if block definitely initializes the declaration,
 of if its condition list is never satisfied and it has an
 else block that definitely initializes the
 declaration.

	A switch conditional definitely initializes a
 declaration if all case blocks definitely initialize
 the declaration and the else block, if any, definitely
 initializes the declaration.

	A for loop definitely initializes a declaration
 if it has an else block that definitely initializes
 the declaration, and there is no break directive in
 the for block, or if the iterated expression type is
 a nonempty type, and the for block definitely
 initializes the declaration.

	A while loop definitely initializes a declaration
 if its condition list is always satisfied and the while
 block definitely initializes the declaration.

	A try/catch exception manager definitely initializes
 a declaration if the try block definitely initializes the
 declaration and all catch blocks definitely initialize the
 declaration or if the finally block definitely initializes
 the declaration.

	A constructor of a class definitely initializes a declaration if the
 body of the constructor definitely initializes the declaration, or if the
 constructor delegates to a constructor which definitely initializes the
 declaration.

	The constructors of a class definitely initialize a declaration if
 every non-partial constructor of the class definitely initializes the
 declaration.

TODO: an assignment expression occurring within a containing expression
 may or may not definitely initialize a value. Specify this!

If a function or value declaration is referenceable at a certain statement or
 declaration, it may additionally be considered definitely initialized
 at that statement or declaration.
If a function declaration is definitely initialized at a certain statement or
 declaration if it is referenceable at that statement or declaration and:
	it is a parameter,

	it is not forward-declared, or

	it is forward-declared and is definitely initialized by the sequence of
 statements from its declaration to the given statement or declaration.

As an exception, a member of a class is not considered definitely initialized
 within the extends clause of the class or of any of its
 constructors.
If a value declaration is definitely initialized at a certain statement or
 declaration if it is referenceable at that statement or declaration and:
	it is a parameter,

	it is not forward-declared and the given statement or declaration is not
 the value declaration itself, and does not occur within the body of the value
 declaration, or

	it is forward-declared and is definitely initialized by the sequence of
 statements from its declaration to the given statement or declaration.

A function or value declaration must be definitely initialized wherever any
 value reference or callable reference to it occurs as an expression within the body
 in which it is declared.
A shared forward-declared declaration belonging to a class
 and not annotated late must be definitely initialized:
	at every return statement of the initializer of the
 containing class, and

	at the end of the very last expression statement, directive statement,
 constructor, or specification statement of the initializer of the containing
 class.

A specification statement for a method or non-variable
 reference, getter, or function may not (indirectly) occur in a for
 or while block unless the declaration itself occurs within the same
 for or while block.
TODO: Furthermore, the typechecker does some tricky analysis to
 determine that code like the following can be accepted:

 Boolean minors;
for (p in people) {
 if (p.age<18) {
 minors = true;
 break;
 }
}
else {
 minors = false;
}

Definite uninitialization

A sequence of statements may possibly initialize a
 forward-declared declaration.
	A sequence of statements possibly initializes a declaration if one of
 the statements is a specification statement for the declaration or a control
 structure that possibly initializes the declaration.

	An if conditional possibly initializes a declaration
 if either the if block possibly initializes the declaration
 and the condition list is not never satisfied, or if the else
 block, if any, possibly initializes the declaration and the condition list is
 not always satisfied.

	A switch conditional possibly initializes a declaration
 if one of the case blocks possibly initializes the declaration
 or the else block, if any, possibly initializes the
 declaration.

	A for loop possibly initializes a declaration if the
 for block possibly initializes the declaration or if it has
 an else block that possibly initializes the declaration.

	A while loop possibly initializes a declaration if the
 while block possibly initializes the declaration and the
 condition list is not never satisfied.

	A try/catch exception manager possibly initializes a
 declaration if the try block possibly initializes the
 declaration, if one of the catch blocks possibly initializes
 the declaration, or if the finally block possibly initializes
 the declaration.

	A constructor of a class possibly initializes a declaration if the body
 of the constructor possibly initializes the declaration, or if the constructor
 delegates to a constructor which possibly initializes the declaration.

	The constructors of a class possibly initialize a declaration if at least
 one constructor of the class possibly initializes the declaration.

A forward-declared declaration is considered definitely uninitialized
 at a certain statement or declaration if:
	it is not possibly initialized by the sequence of statements from its declaration
 to the given statement or declaration,

	the statement does not (indirectly) occur in the for block or
 else block of a for loop with a for
 block that possibly initializes it,

	the statement does not (indirectly) occur in the while block of
 a while loop with a while block that possibly
 initializes it,

	the statement does not (indirectly) occur in a catch block
 of a try/catch exception manager with a try block
 that possibly initializes it, and

	the statement does not (indirectly) occur in the finally block
 of a try/catch exception manager with a try block
 or catch block that possibly initializes it.

A function or non-variable value declaration must be definitely
 uninitialized wherever any value reference or callable reference to it occurs as a specification
 statement within the body in which it is declared.

Conditions

Assertions and certain control structures have a condition list.
 A condition list has one or more conditions.
ConditionList: "(" Condition ("," Condition)* ")"
Any condition in the list may refer to a variable defined in a condition that occurs
 earlier in the list.
A condition list is considered to be always satisfied if
 every condition in the list is always satisfied. A condition list is considered to be
 never satisfied if some condition in the list is never satisfied.
There are four kinds of condition:
	a boolean condition is satisfied when a boolean expression
 evaluates to true,

	an assignabilty condition is satisfied when an expression
 evaluates to an instance of a specified type,

	an existence condition is satisfied when an expression
 evaluates to a non-null value, and

	a nonemptiness condition is satisfied when an expression
 evaluates to a non-null, non-empty value.

Condition: BooleanCondition | IsCondition | ExistsCondition | NonemptyCondition
TODO: are we going to support satisfies conditions on
 type parameters, for example, if (Element satisfies Object), to allow
 refinement of its upper bounds?

Boolean conditions

A boolean condition is just an expression.
BooleanCondition: Expression
The expression must be of type Boolean.
A boolean condition is considered to be always satisfied
 if it is a value reference to true. A boolean condition is
 considered to be never satisfied if it is a value reference
 to false.
TODO: Should we do some more sophisticated static analysis to
 determine if a condition is always/never satisfied?

Assignability conditions

An assignability condition may contain either:
	an unqualified value reference to a non-variable,
 non-default reference, or

	an inline variable declaration together with an expression.

IsCondition: "!"? "is" (TypedVariable Specifier | Type MemberName)
A negated assignability condition is one which starts
 with !.
Note: the prefix form is Type val reads a
 little unnaturally in English. But for a condition with a specifier, the
 form is Type val = expression is much less ambiguous than
 val = expression is Type, which looks like an assignment
 of a boolean value.

For an assignability condition containing a value reference, and with a
 conditional expression of type T and specified type
 X:
	the value will be treated by the compiler as having type
 T&X inside the block or expression that immediately
 follows the condition, and, if this is the only condition in the condition
 list, as having type T~X inside the following
 else block or expression if any, unless

	this condition is negated, in which case the value will be treated
 by the compiler as having type T~X inside the block or
 expression that immediately follows the condition, and, if this is the only
 condition in the condition list, as having type T&X
 inside the following else block or expression if any.

Where, for any given types T and X,
 the type T~X is determined as follows:
	if X covers T, as defined by
 the section called “Coverage”, then T~X is
 Nothing,

	if T is an intersection type, then
 T~X is the intersection of all U~X
 for every type U in the intersection,

	if T is a union type, then T~X
 is the union of all U~X for every type U
 in the union,

	if T is a type parameter, then T~X
 is T&<U~X> when U is the
 intersection of all upper bounds on T, or
 Anything if T has no declared upper
 bounds,

	if T is an enumerated type or an instantiation of
 a generic enumerated type, then T~X is the union of all
 C~X for every case C of
 T, or,

	otherwise, T~X is T.

Note: the compiler produces a warning if either T&X
	 or T~X is Nothing.

If you prefer, you can think of the following:
Transaction tx = ...
if (is Usable tx) { ... }
As an abbreviation of:
if (is Transaction&Usable tx = tx) { ... }
Where the tx declared by the condition hides the outer
 declaration of tx inside the block that follows.
As a special exception to the above, if a condition occurs in a
 dynamic block, and the conditional expression has no type,
 and the condition contains a value reference, then:
	the value will be treated by the compiler as having type
 X where X is the specified type,
 inside the block or expression that immediately follows the condition,
 unless

	 the condition is negated, in which case the value will be treated
 by the compiler as having no type.

Existence conditions

An existence condition may contain either:
	an unqualified value reference to a non-variable,
 non-default reference, or

	a pattern together with an expression.

ExistsCondition: "!"? "exists" (Pattern Specifier | MemberName)
A negated condition is one which starts with
 !.
Every existence condition is equivalent to—and may be considered an
 abbreviation of—an assignability condition:
	exists x is equivalent to !is Null x
 (and to is Object x), and

	!exists x is equivalent to is Null x.

For an existence condition which is not negated:
	if the condition has a pattern, the patterned type is
 T&Object, where the specifier expression is of type
 T, and, if the pattern is a pattern variable, the declared
 type of the variable, if any, must be a subtype of Object,
 or

	if the condition contains a value reference, the value will be treated
 by the compiler as having type T&Object inside the block
 or expression that immediately follows the condition, where the conditional
 expression is of type T, and, if this is the only condition
 in the condition list, as having the type T&Null inside
 the following else block or expression if any.

For a negated existence condition:
	if the condition has a pattern, it must be a pattern variable, and the
 patterned type is T&Null, where the specifier expression
 is of type T, and the declared type of the variable, if any,
 must be Null, or

	if the condition contains a value reference, the value will be treated
 by the compiler as having type T&Null inside the block
 or expression that immediately follows the condition, where the conditional
 expression is of type T, and, if this is the only condition
 in the condition list, as having the type T&Object
 inside the following else block or expression if any.

Note: the compiler produces a warning if either T&Object
 or T&Null is Nothing.

If you prefer, you can think of the following:
if (exists name) { ... }
As an abbreviation of:
if (exists String name = name) { ... }
Where the name declared by the condition hides the outer
 declaration of name inside the block that follows.
As a special exception to the above, if a condition occurs in a
 dynamic block, and the conditional expression has no type, and
 the condition contains a value reference, then the value will be treated by the
 compiler as having no type.

Nonemptiness conditions

A nonemptiness condition may contain either:
	an unqualified value reference to a non-variable,
 non-default reference, or

	a pattern together with an expression.

NonemptyCondition: "!"? "nonempty" (Pattern Specifier | MemberName)
A negated condition is one which starts with
 !.
The type of the value reference or expression must be a subtype of
 Anything[]?.
Every nonemptiness condition is equivalent to—and may be considered an
 abbreviation of—an assignability condition:
	nonempty x is equivalent to !is []? x,
 and

	!nonempty x is equivalent to is []? x.

For a nonemptiness condition which is not negated:
	if the condition has a pattern, the patterned type is
 T~<[]?>, where the specifier expression is of type
 T, and, if the pattern is a pattern variable, the declared
 type of the variable, if any, must be a subtype of [Anything+],
 or

	if the condition contains a value reference, the value will be treated
 by the compiler as having type T~<[]?> inside the block
 or expression that immediately follows the condition, where the conditional
 expression is of type T, and, if this is the only condition
 in the condition list, as having the type T&<[]?>
 inside the following else block or expression if any.

For a negated nonemptiness condition:
	if the condition has a pattern, it must be a pattern variable, and the
 patterned type is T&<[]?> and the declared
 type of the variable, if any, must be a subtype of []?,
 or

	if the condition contains a value reference, the value will be treated
 by the compiler as having type T&<[]?> inside the
 block or expression that immediately follows the condition, where the conditional
 expression is of type T, and, if this is the only condition
 in the condition list, as having the type T~<[]?>
 inside the following else block or expression if any.

Note: the compiler produces a warning if either T&<[]?>
 or T~<[]?> is Nothing.

If you prefer, you can think of the following:
if (nonempty seq) { ... }
As an abbreviation of:
if (nonempty seq = seq) { ... }
Where the seq declared by the condition hides the outer
 declaration of seq inside the block that follows.
As a special exception to the above, if a condition occurs in a
 dynamic block, and the conditional expression has no type, and
 the condition contains a value reference, then the value will be treated by the
 compiler as having no type.

Case conditions

The branches of a switch conditional each belong to a
 case condition. There are three kinds of case condition:
	a value case—a list of constant values,

	a type case—an assignability condition
 of form is V for some type V, and

	a pattern case—a tuple or entry pattern,
 as defined above in the section called “Patterns”, where all pattern variables
 declare explicit types.

CaseCondition: "(" (ValueCase | TypeCase | PatternCase) ")"
ValueCase: Constant ("|" Constant)*
TypeCase: "is" Type
PatternCase: TuplePattern | EntryPattern
A constant value is:
	a value reference, as defined in the section called “Value references”,
 to
	a toplevel anonymous class, or

	a value constructor of a toplevel class that is a subtype of
		 Identifiable,

	a string literal, character literal, integer literal, or negated
 integer literal, or

	a tuple enumeration, as defined in the section called “Iterable and tuple enumeration”,
 of constant values.

Constant: BaseExpression | ConstructorExpression | LiteralConstant | TupleConstant
LiteralConstant: "-"? IntegerLiteral | CharacterLiteral | StringLiteral | VerbatimStringLiteral
TupleConstant: "[" (Constant (", " Constant))? "]"
Every case condition has a type:
	for a value case, the type is the union of the types of the values,

	for a type case, the type is the specified type, and

	for a pattern case, the type is formed from the explicit types
 declared by the pattern variables:
	the type of a tuple pattern with one element pattern is
 [T], where T is the type
 of its element pattern,

	the type of a tuple pattern with more than one element pattern
 is Tuple<T,F,R>, where F
 is the type of its first element pattern, R is
 the type of the tuple pattern formed by removing its first element
 pattern, and T is the union of the types of all
 its element patterns,

	the type of an entry pattern is K->V
 where K is the type of its key pattern, and
 K is the type of its item pattern, and

	the type of a pattern variable is its explicitly declared
 type.

Note: to each value constructor, the compiler assigns an internal
 type which is a subtype of the type of the class to which the constructor belongs.
 The union of all internal value constructor types for value constructors listed
 in the of clause of the class declaration covers the class
 type.

For a case of type U of a switch with
 switched type V, as defined below in
 the section called “switch/case/else”:
	the intersection type V&U must not be exactly
 Nothing, and

	if the case is a type case, the switch variable,
 or, if there is no inline variable declared by the switch,
 the value referred by the switch expression, will be
 treated by the compiler as having the type V&U inside
 the case block.

As a special exception to the above, if a switch occurs
 in a dynamic block, and there is no switched type, the
 switch variable, or the value referred by the
 switch expression will be treated by the compiler as having
 the type V inside the case block.

Control structures and assertions

Control of execution flow may be achieved using control directives and
 control structures. Control structures include conditionals,
 loops, and exception management.
Ceylon provides the following control structures:
	the if/else conditional—for controlling
 execution based on a boolean condition, type condition, or check for a
 non-null or non-empty value,

	the switch/case/else conditional—for
 controlling execution using an enumerated list of values or types,

	the while loop—for loops which terminate
 based on a boolean condition, type condition, or check for a non-null or
 non-empty value,

	the for/else loop—for looping over elements
 of an iterable object, and

	the try/catch/finally exception manager—for
 managing exceptions and controlling the lifecycle of objects which require
 explicit destruction.

ControlStructure: IfElse | SwitchCaseElse | While | ForFail | TryCatchFinally | Assertion
Control structures are not considered to be expressions, and therefore
 do not evaluate to a value. However, comprehensions, specified in
 the section called “Comprehensions”, and conditional expressions, specified in
 the section called “Conditional expressions, let expressions, and anonymous class expressions” are part of the expression syntax and share much of
 the syntax and semantics of the control structures they resemble.

Assertions are runtime checks upon program invariants, or
 function preconditions and postconditions. An assertion failure represents a bug in
 the program, and is not considered recoverable. Therefore, assertions should not be
 used to control "normal" execution flow.
Note: of course, in certain circumstances, it is appropriate to handle
 the exception that results from an assertion failure, for example, to display a message
 to the user, or in a testing framework to aggregate and report the failures that occurred
 in test assertions. A test failure may be considered "normal" occurrence from the point
 of view of a testing framework, but it's not "normal" in the sense intended above.

if/else

The if/else conditional has the following form:
IfElse: If Else?
If: "if" ConditionList Block
Else: "else" (Block | IfElse)
Every if/else conditional construct has an
 if clause. The construct may optionally include:
	a chain of an arbitrary number of child
 else if clauses, and/or

	an else clause.

if (payment.amount <= account.balance) {
 account.balance -= payment.amount;
 payment.paid = true;
}
else {
 throw NotEnoughMoneyException();
}
shared void welcome(User? user) {
 if (exists user) {
 print("Welcome back, ``user.name``!");
 }
 else {
 print("Welcome to Ceylon!");
 }
}
if (is CardPayment p = order.payment,
 !p.paid) {
 p.card.charge(total);
}

switch/case/else

The switch/case/else conditional has the following
 form:
SwitchCaseElse: Switch Case+ Else?
Every switch conditional has a
 switch clause.
Switch: "switch" "(" SwitchVariableOrExpression ")"
The switch clause has a switched
 expression, either:
	an expression, or

	an inline variable declaration together with a specified
 expression.

SwitchVariableOrExpression: Expression | Variable Specifier
The switched type is the type of the expression or
 inline variable.
Note: there is an ambiguity here between assignment expressions
 and inline variable declarations. This ambiguity is resolved in favor of
 interpreting the switched expression as a variable declaration. Therefore, a
 switched expression in a switch clause may not be an
 assignment expression.

If a switch has a type case condition, and does not
 declare an inline variable, then the switched expression must be an unqualified
 value reference to a non-variable, non-default
 reference.
In addition, every switch conditional must include:
	a chain of one or more child case and
 else case clauses, and,

	optionally, a chain of an arbitrary number of child
 else if clauses, and/or

	optionally, an else clause.

Case: "else"? "case" CaseCondition Block
Two cases are said to be disjoint
 if:
	the intersection of the types of their case conditions is
 exactly Nothing, as defined by
 the section called “Disjoint types”, or

	if they are both value cases with no literal value or
 anonymous class value reference in common.

In every switch statement, every pair of
 cases must be disjoint, unless one is an
 else case.
A switch is exhaustive if there
 are no literal values in its cases, and the union type formed
 by the types of the case conditions of the switch covers the
 switched type, as defined by the section called “Coverage”. If no else
 block is specified, the switch must be exhaustive.
Note: On the other hand, even if the switch
 is exhaustive, an else block may be
 specified, in order to allow a switch that accommodates
 additional cases without resulting in a compilation error.

As a special exception to the above, if a switch occurs
 in a dynamic block, and the switched expression has no type,
 the cases are not statically type-checked for exhaustion.
If an else block is specified, then the switch
 variable or, if there is no inline variable declared by the switch,
 the value referred by the switch expression, will be treated
 by the compiler as having the type V~U inside the
 else block, where V is the switched type,
 and U is the union type formed by the types of the case
 conditions of the switch.
Boolean? maybe = ... ;
switch (maybe)
case (null | false) {
 return false;
}
case (true) {
 return true;
}
Integer|Float number = ... ;
switch (number)
case (is Integer) {
 return sqrt(number.float);
}
case (is Float) {
 return sqrt(number);
}

for/else

The for/else loop has the following form:
ForFail: For Fail?
For: "for" ForIterator Block
Fail: "else" Block
Every for/else conditional construct has an
 for clause. The construct may optionally include an
 else clause, as specified in
 the section called “Execution of loops”.
The for iterator has an iterator
 pattern and an iterated expression
 that contains the range of values to be iterated.
ForIterator: "(" Pattern "in" Expression ")"
The type of the iterated expression must have some principal
 supertype instantiation {T*} or {T+}
 of Iterable in ceylon.language.
 Then the patterned type of the iterator pattern is T.
As a special exception to the above, if a for
 occurs in a dynamic block, and the iterated expression
 has no type, the iterator is not statically type-checked. If the iteration
 variable does not declare an explicit type, the iteration variable has no
 type.
for (p in people) {
 print(p.name);
}
variable Float sum = 0.0;
for (i in -10..10) {
 sum += x[i] else 0.0;
}
for (word -> freq in wordFrequencyMap) {
 print("The frequency of ``word`` is ``freq``.");
}
for (p in group) {
 if (p.age >= 18) {
 log.info("Found an adult: ``p.name``.");
 break;
 }
}
else {
 log.info("No adult in group.");
}

while

The while loop has the form:
While: LoopCondition Block
The loop condition list determines when the loop terminates.
LoopCondition: "while" ConditionList
TODO: does while need an else
 block? Python has it, but what is the real usecase?

variable Integer n=0;
variable [Integer*] seq = [];
while (n<=max) {
 seq=seq.withTrailing(n);
 n+=step(n);
}

try/catch/finally

The try/catch/finally exception manager has the
 form:
TryCatchFinally: Try Catch* Finally?
Try: "try" ResourceList? Block
ResourceList: "(" Resource ("," Resource)* ")"
Catch: "catch" "(" Variable ")" Block
Finally: "finally" Block
Every try conditional construct has a
 try clause. The construct may optionally include:
	a chain of an arbitrary number of child
 catch clauses, and/or

	a finally clause, as specified in
 the section called “Exception handling”.

Each catch block defines a variable. The type
 of the variable must be assignable to Throwable in
 ceylon.language. If no type is explicitly specified,
 the type is inferred to be Exception.
Note: a catch block type may be a union
 or intersection type:

 catch (NotFoundException|DeletedException e) { ... }

If there are multiple catch blocks in a certain
 control structure, then:
	The type of a catch variable may not be
 a subtype of any catch variable of an earlier catch
 block belonging to the same control structure.

	If the type of a catch variable is a union
 type E1|E2|...|En then no member Ei
 of the union may be a subtype of any catch variable of an earlier
 catch block belonging to the same control
 structure.

The try block may have a list of resource
 expressions, each of which may produce either:
	a destroyable resource, or

	an obtainable resource.

Resource: Expression | Variable Specifier
Note: there is an ambiguity here between assignment expressions
 and inline variable declarations. This ambiguity is resolved in favor of
 interpreting the resource expression as a variable declaration. Therefore, a
 resource expression in a try clause may not be an
 assignment expression.

A destroyable resource expression is:
	an instantiation expression, as defined in
 the section called “Direct invocations”, or

	an inline variable declaration together with
 an instantiation expression.

The instantiation expression must be of type assignable to
 Destroyable in ceylon.language.
An obtainable resource expression is:
	an expression, or

	an inline variable declaration together with
 an expression.

The expression must be of type assignable to
 Obtainable in ceylon.language.
If no type is explicitly specified for a resource variable, the
 type of the variable is inferred to be the type of the expression.
try (File(path).lock) {
 file.open(write);
 ...
}
catch (FileNotFoundException fnfe) {
 print("file not found: ``path``");
}
catch (FileReadException fre) {
 print("could not read from file: ``path``");
}
finally {
 assert (file.closed);
}
try (Transaction(), s = Session()) {
 return s.get(Person, id);
}
catch (NotFoundException|DeletedException e) {
 return null;
}

Assertions

An assertion has an asserted condition list and, optionally,
 a failure message.
Assertion: AssertionMessage? "assert" ConditionList ";"
AssertionMessage: StringLiteral | VerbatimStringLiteral | StringTemplate
The message carried by the assertion failure may be specified
 using a string literal or interpolated string template, as defined
 in the section called “String templates”.
"total must be less than well-defined bound"
assert (exists bound, total<bound);
If the assertion contains an assignability, existence, or
 nonemptiness condition containing a value reference then the compiler
 treats the referenced value as having a narrowed type at program
 elements that occur in the lexical scope of the assertion.
{Element*} elements = ... ;
assert (nonempty elements);
Element first = elements.first;
TODO: how can we support interpolation in the assertion
 failure message?

 assert (total<bound)
else "total must be less than ``bound``";

Chapter 6. Expressions

An expression produces a value when executed. An
 algorithm expressed using functions and expressions, rather than sequences
 of statements is often easier to understand and refactor. Therefore, Ceylon
 has a highly flexible expressions syntax. Expressions are formed from:
	literal values, string templates, and self references,

	evaluation and assignment of values,

	invocation of functions and instantiation of classes,

	callable references, static references, and anonymous functions,

	comprehensions,

	metamodel references,

	enumeration of iterables and tuples, and

	operators.

Ceylon expressions are validated for typesafety at compile time. To
 determine whether an expression is assignable to a program element such as
 a value or parameter, Ceylon considers the type of the
 expression (the type of the objects that are produced when the expression
 is evaluated). An expression is assignable to a program element if the type
 of the expression is assignable to the declared type of the program
 element.
Within a dynamic block, an expression may have no
 type, in the sense that its type can not be determined using static analysis
 of the code.
Literal values

Ceylon supports literal values of the following types:
	Integer and Float,

	Character, and

	String.

The types Integer, Float,
 Character, and String are defined in the
 module ceylon.language.
Note: Ceylon does not need a special syntax for Boolean
 literal values, since Boolean is just a class with the cases
 true and false. Likewise, null
 is just the singleton value of an anonymous class.

Literal: IntegerLiteral | FloatLiteral | CharacterLiteral | StringLiteral | VerbatimStringLiteral
All literal values are instances of immutable types. The value of a literal
 expression is an instance of the type. How this instance is produced is not specified
 here.
Integer number literals

An integer literal, as defined in
 the section called “Numeric literals”, is an expression of type
 Integer, representing a numeric integer.
Integer five = 5;
Integer mask = $1111_0000;
Integer white = #FFFF;

Floating point number literals

A floating point literal, as defined in
 the section called “Numeric literals”, is an expression of type
 Float, a floating-point representation of
 a numeric value.
shared Float pi = 3.14159;

Character literals

A single character literal, as defined in
 the section called “Character literals”, is an expression of type
 Character, representing a single 32-bit
 Unicode character.
if (exists ch=string[i], ch == '+') { ... }

Character string literals

A character string literal or verbatim string, as defined
 in the section called “String literals”, is an expression of type
 String, representing a sequence of Unicode
 characters.
person.name = "Gavin King";
print("Melbourne\tVic\tAustralia\nAtlanta\tGA\tUSA\nGuanajuato\tGto\tMexico\n");
String verbatim = """A verbatim string can have \ or a " in it."""";

String templates

A character string template contains interpolated
 expressions, surrounded by character string fragments.
StringTemplate: StringStart Expression (StringMid Expression)* StringEnd
Each interpolated expression contained in the string template must have
 a type assignable to Object defined in
 ceylon.language.
print("Hello, ``person.firstName`` ``person.lastName``, the time is ``Time()``.");
print("1 + 1 = ``1 + 1``");
A string template is an expression of type String.

Self references

The type of the following expressions depends upon the context in which
 they appear.
SelfReference: "this" | "super" | "outer"
A self reference expression may not occur outside of a class or
 interface body.
The immediately containing class or interface for
 a program element is the class or interface in which the program element
 occurs, and which contains no other class or interface in which the program
 element occurs. If there is no such class or interface, the program element
 has no immediately containing class or interface.
A this, outer, or
 super self reference must have an immediately containing
 class or interface. An outer self reference must have
 an immediately containing class or interface for its immediately containing
 class or interface.

 Note: the keyword package is not an expression, and
 thus does not have a well-defined type. However, it may be used to qualify
 and disambiguate a value reference or callable reference. A value reference or
 callable reference qualified by the keyword package always
 refers to a toplevel member of the containing package, never to an imported
 declaration or nested declaration, as defined by
 the section called “Unqualified reference resolution”.

this

The keyword this refers to the current instance,
 as defined in the section called “Current instance of a class or interface”, of the
 immediately containing class or interface (the class or interface in which
 the expression appears). Its type is the applied type formed by the
 immediately containing class or interface with its own type parameters as
 type arguments.

outer

The keyword outer refers to the current instance,
 as defined in the section called “Current instance of a class or interface”, of the
 class or interface which immediately contains the immediately containing
 class or interface. Its type is the applied type formed by this class or
 interface with its own type parameters as type arguments.

super

The keyword super refers to the current instance
 of the immediately containing class or interface. Its type is the
 intersection of the principal instantiation of the immediate superclass
 for the immediately containing class or interface, as defined in
 the section called “Principal instantiation of a supertype”, with all principal
 instantiations of immediate superinterfaces of the immediately containing
 class or interface. A member reference such as super.x
 may not resolve to a formal declaration, nor to any
 member inherited from more than one supertype of the intersection type.
As an exception to this, when the keyword super
 occurs in an extends clause, as specified in
 the section called “Extension”, it refers to the current instance of
 the class or interface which immediately contains the declaration to which
 the extends clause belongs. Its type is the
 intersection of the principal instantiation of the immediate superclass
 of this containing class or interface, with all principal instantiations
 of immediate superinterfaces of this containing class or interface.
The keyword super may occur as the first operand
 of an of operator, in which case the second operand is
 the principal instantiation of some supertype of the class for the
 immediately containing class or interface. The expression
 (super of Type) has type Type. A
 member reference such as (super of Type).x may not
 resolve to a formal member, nor to any member inherited
 from more than one supertype of Type, nor to any member
 that is refined by the class or any intermediate supertype of the class.

Anonymous functions

An anonymous function is a function, as specified in
 the section called “Functions”, with no name, defined within an
 expression. It comprises one or more parameter lists, followed by
 an expression or a block of code.
FunctionExpression: ("function" | "void")? Parameters+ (LazySpecifier | Block)
The parameters are the parameters of the function. The lazy
 specifier or block of code is the implementation of the function.
An anonymous function may be considered void:
	if the void keyword is specified,
 the function is a void function, or

	if the function keyword is specified,
 the function is not a void function, or,

	otherwise, the function is void if
 and only if it is defined using a block in which no
 return statement with an expression occurs
 sequentially, as defined in the section called “Block structure and references”.

If the function is not considered void,
 then its return type is inferred.
The type of an anonymous function expression is the callable
 type of the function, as specified in
 the section called “Callable type of a function”.
(Value x, Value y) => x<=>y
void (String name) => print(name)
(String string) {
 value mid = string.size / 2;
 return [string[...mid],string[mid+1...]];
}
An anonymous function occurring in the extends
 clause of a class may not contain a reference to a variable attribute
 of the class.
Note: evaluation of an anonymous function expression,
 as defined in the section called “Evaluation of anonymous functions” results
 in instantiation of an object of type Callable.
 However, the members of this object are never in scope, do not hide
 other declarations, and are not referenceable from within the
 anonymous function.

Note: there is almost no semantic difference between the
 following function declarations:

 Float f(Float x)(Float y) => x*y;

 Float(Float) f(Float x) => (Float y) => x*y;

 The first form is strongly preferred.

Anonymous function parameter type inference

If the type of a parameter of an anonymous function is
 not declared explicitly, then the type of the parameter may in
 certain cases be inferred if the anonymous function occurs:
	as a listed argument, as defined in
 the section called “Listed arguments”, in a positional
 argument list, or

	as a specified argument, anonymous argument, or
 listed argument, as defined in
 the section called “Named argument lists”, in a named argument
 list.

Suppose the type of the ith parameter
 p of an anonymous function is not declared
 explicitly, and further suppose that the anonymous function
 occurs as the argument to a parameter x of
 some function or class in a direct invocation expression, as
 defined in the section called “Direct invocations”.
Then the type of p may be inferred if
 either:
	the function or class has no type parameters, or
 the invocation has an explicit type argument list, and
 x is a callable parameter with the
 same number of parameters as the anonymous function, and
 with ith parameter q,

	the function or class has at least one type parameter,
 and the invocation has no explicit type argument list, and
 x is a callable parameter with the same
 number of parameters as the anonymous function, and the type
 of the ith parameter q
 of x does not involve any of the type
 parameters of the generic function or class, or

	x is a value parameter whose type
 does not involve any of the type parameters of the generic
 function or class and represents a function with the same
 number of parameters as the anonymous function, and with
 ith parameter q,
 according to the section called “Callable type of a function”.

Then the type of p is inferred to be the
 type of q in the realization of the function or
 class, as defined in the section called “Realizations”.
Otherwise, suppose the type of the ith
 parameter p of an anonymous function is not
 declared explicitly, and further suppose that the anonymous function
 occurs as the nth argument in the positional
 argument list of an indirect invocation expression.
Then if the callable type of the invoked expression represents
 a function whose nth parameter is a callable
 parameter with the same number of parameters as the anonymous
 function, according to the section called “Callable type of a function”,
 then the type of p is inferred to be the type of
 the corresponding ith parameter of this callable
 parameter.
That is, if the type of the invoked expression is
 R(*T) where T
 is a tuple type whose nth element type is
 P(*S) and S is
 in turn a tuple type whose ith element type is
 Q, then Q is the inferred type
 of p.

Compound expressions

An atom is a literal or self reference, a
 string template, a base expression, an iterable or tuple enumeration,
 an anonymous class expression, a metamodel or reference expression, or
 a parenthesized expression.
Atom: LiteralExpression | BaseExpression | DelimitedExpression | MetaExpression | SelfReference
LiteralExpression: Literal | StringTemplate
DelimitedExpression: GroupedExpression | Enumeration | ObjectExpression
MetaExpression: Meta | Dec
A primary is formed by recursively forming
 member expressions, static expressions, invocation expressions, and
 index expressions from an initial atom, using the operators in the
 first row of the table of operator precedence and associativity in
 the section called “Operator precedence”.
Primary: Atom | QualifiedExpression | Invocation | IndexedExpression
QualifiedExpression: MemberExpression | ConstructorExpression | StaticExpression
More complex expressions are formed by combining expressions using
 operators, including assignment operators, as defined in the section called “Operators”,
 and using inline conditional expressions and anonymous functions.
ValueExpression: Primary | OperatorExpression
Expression: ValueExpression | FunctionExpression | LetExpression | ConditionalExpression
Note: the grammar of operator expressions is defined by
 the table of operator precedence and associativity in
 the section called “Operator precedence”. Thus, the rules
 OperatorExpression and IndexedExpression
 are not defined in BNF.

Parentheses are used for grouping:
GroupedExpression: "(" Expression ")"
A compound expression occurring in a dynamic
 block, and involving a qualified or unqualified reference with no type,
 or a reference to a declaration with no type, may also have no type.
In particular, if an operand expression has no type, and the type
 of the operator expression depends upon the type of the operand, and the
 operator expression occurs within a dynamic block,
 then the whole operator expression has no type.
Base expressions

A base expression is an identifier,
 optionally qualified by the keyword package,
 with an optional list of type arguments:
BaseExpression: PackageQualifier? (MemberName | TypeName) TypeArguments?
A base expression is either:
	a reference to a toplevel function, toplevel value, or
 toplevel class,

	a reference within the lexical scope of the referenced
 function, value, constructor, or class, or

	a reference within the body of the referenced function,
 value, constructor, or class.

The referenced declaration is determined by resolving the unqualified
 reference as defined by the section called “Unqualified reference resolution”.
 The unqualified realization for the unqualified reference is determined
 according to the section called “Realizations”.
The type argument list, if any, must conform, as defined by
 the section called “Type arguments and type constraints”, to the type parameter list
 of the unqualified realization.
If a base expression is a reference to an attribute, method, member
 class, or member class constructor of a class, the receiving instance is the
 current instance of that class, as defined by
 the section called “Current instance of a class or interface”. Otherwise, there is no
 receiving instance.

Member expressions

A member expression is a receiver
 expression, followed by an identifier, with an optional list
 of type arguments.
MemberExpression: (Primary ".") (MemberName | TypeName) TypeArguments?
A member expression is a reference to a member of a type: an
 attribute, method, or member class.
The referenced member is determined by resolving the qualified
 reference as defined by the section called “Qualified reference resolution”.
 The qualified realization for the qualified reference is determined
 according to the section called “Realizations”.
The type argument list, if any, must conform, as defined by
 the section called “Type arguments and type constraints”, to the type parameter list
 of the qualified realization.
The receiver expression produces the instance upon which the member
 is invoked or evaluated. When a member expression is executed, the receiver
 expression is evaluated to produce the receiving instance which is held
 until the member is invoked or evaluated, as defined in
 the section called “Evaluation, invocation, and assignment”.

Constructor expressions

A constructor expression is a base or member
 expression that references a class with constructors, followed by an
 identifier, with an optional list of type arguments.
ConstructorExpression: (BaseExpression | MemberExpression) "." MemberName TypeArguments?
A constructor expression is a reference to a constructor of a
 class.
The referenced member is determined by resolving the qualified
 reference as defined by the section called “Qualified reference resolution”.
 The qualified realization for the qualified reference is determined
 according to the section called “Realizations”.
The type argument list, if any, must conform, as defined by
 the section called “Type arguments and type constraints”, to the type parameter list
 of the qualified realization.
If the constructor expression is qualified by a member expression,
 its receiver expression produces the instance upon which the constructor
 is invoked. When a constructor expression is executed, the receiver
 expression is evaluated to produce the receiving instance which is held
 until the constructor is invoked or evaluated, as defined in
 the section called “Evaluation, invocation, and assignment”.

Value references

A value reference is a base expression or
 member expression that references a value declaration or value constructor
 declaration.
The type of a value reference expression is the type of the
 realization of the referenced value or value constructor.
A value or value constructor declaration is never generic, so a value
 reference never has a type argument list.
A value reference that does not occur within any dynamic
 block may not refer to a value declaration or value parameter with no type.
A value reference which occurs within a dynamic
 block and which does not reference any statically typed declaration, or
 which references a value declaration or value parameter with no type,
 has no type.
If a base expression or member expression does not reference any
 statically typed declaration, and occurs within a dynamic
 block, then it is considered a value reference.

Callable references

A callable reference is a base expression,
 member expression, or constructor expression that references something—a
 function, class, or callable constructor—that can be invoked
 or instantiated by specifying a list of arguments.
If a callable reference refers to a class with a default constructor,
 the callable reference is considered a reference to the default constructor.
A callable reference may be invoked immediately, or it may be passed
 to other code which may invoke the reference. A callable reference captures
 the return type and parameter list types of the function or class it refers
 to, allowing compile-time validation of argument types when the callable
 reference is invoked.
The type of a callable reference expression is the callable type of
 the realization of the referenced function, class, or callable constructor.
If a callable reference expression refers to a generic declaration,
 it must either:
	have an explicit type argument list,

	be immediately followed by an argument list, allowing the
 compiler to infer the type arguments, as defined in
 the section called “Type argument inference”, or,

	be the immediate child of a constructor expression that is
 immediately followed by an argument list, allowing the compiler to
 infer the type arguments, as defined in
 the section called “Type argument inference”, or

	occur as a listed argument, as defined in
 the section called “Listed arguments” in a positional argument
 list, or as a specified argument, anonymous argument, or
 listed argument, as defined in the section called “Named argument lists”,
 in a named argument list, and its type arguments must be
 inferable as defined below.

A callable reference may not occur as the receiver expression of a
 member expression.
Note: this restriction exists to eliminate an ambiguity in
 the interpretation of static expressions such as Person.string
 and Person.equals.

A callable reference that does not occur within any dynamic
 block may not refer to a function declaration with no return type.
A callable reference which occurs within a dynamic
 block and which references a function declaration with no return type, has
 no type.
Note: in a future release of the language, we would like to
 add a syntax for obtaining a callable reference to an attribute, something
 like person.@name, to allow attributes to be passed by
 reference. This would also allow static references like
 Person.@name.

If a callable reference f with no explicit type
 argument list occurs as the argument to a callable parameter p
 of a function or class in a direct invocation expression, as defined below in
 the section called “Direct invocations”, then the type arguments of f
 are inferred according to the rules defined in the section called “Type argument inference”
 as if the types of the parameters of p were the types of
 listed arguments of f in a positional argument list, unless
 the invoked function or class is generic, and the invocation expression does
 not itself specify explicit type arguments, in which case any parameter whose
 type involves a type argument of the invoked function or class is ignored.
If a callable reference f with no explicit type
 argument list occurs as the argument to a value parameter p
 of type Return(*Args) in a direct or indirect
 invocation expression, then the type arguments of f are
 inferred according to the rules defined in the section called “Type argument inference”
 as if Args were the type of a positional argument list, unless
 the invocation is a direct invocation expression, and the invoked function or
 class is generic, and Args involves type parameters of the
 invoked function or class.

Static expressions

A static expression is a type, optionally qualifier by
 the keyword package, followed by an identifier, with an optional
 list of type arguments.
StaticExpression: PackageQualifier? (TypeName TypeArguments? ".")+ (MemberName | TypeName) TypeArguments?
A static expression is a reference to a member of a type: an attribute, method,
 or member class, or to a constructor of a member class of the type.
The referenced member is determined by resolving the qualified reference as defined
 by the section called “Qualified reference resolution”. The qualified realization for the
 qualified reference is determined according to the section called “Realizations”.
The type argument list, if any, must conform, as defined by
 the section called “Type arguments and type constraints”, to the type parameter list of the
 qualified realization.
Unlike member expressions, a static expression does not have a receiver expression.
 All static expressions are callable expressions which accept an argument of the specified
 type.
A static expression must reference a statically typed declaration with no missing
 types, even within a dynamic block.
If the qualifying type in a static expression refers to a generic declaration, then
 either:
	it must have an explicit type argument list, or

	the static expression must occur as a listed argument, as defined in
 the section called “Listed arguments” in a positional argument list, or as a
 specified argument, anonymous argument, or listed argument, as defined in
 the section called “Named argument lists”, in a named argument list, and its type
 arguments must be inferable as defined below.

If a static expression T.m for a generic type T
 with no explicit type argument list occurs as the argument to a parameter p
 of type Return(*Arg) in a direct or indirect invocation expression,
 then the type arguments of T are inferred according to the rules defined
 in the section called “Type argument inference” as if Arg were the type of a
 positional argument list, and [T] were the type of a parameter list,
 unless the invocation is a direct invocation expression, and the invoked function or class
 is generic, and Arg involves type parameters of the invoked function or
 class.

Static value references

A static value reference is a static expression that
 references an attribute declaration or member class value constructor declaration.

List<Anything>.size
The type of a static value reference expression is:
	X(T) for an attribute whose realization is of
		 type X, and with qualifying type T,
		 or

	T.X(T) for a member class value constructor whose
		 realization is of type T.X, and with qualifying type
		 T.X.

A value or value constructor declaration is never generic, so a static value
 reference never ends in a type argument list.

Static callable references

A static callable reference is a static expression that
 references something—a method or member class, or a callable constructor of
 a member class—that can be invoked or
 instantiated.
List<String>.filter
Iterable<Integer>.map<String>
The type of a static callable reference expression is:
	R(*A)(T) for a method, member class, or member class
 constructor whose realization has callable type R(*A), and
 with qualifying type T, or

	T.X(*A)(T) for a member class constructor whose
 realization has callable type T.X(*A), and with qualifying
 type T.X.

If a callable reference expression refers to a generic declaration, it must
 end in an explicit type argument list.

Invocation expressions

A callable expression—any expression of type
 Callable—is invokable. An
 invocation consists of an invoked expression,
 together with an argument list and, optionally, an explicit type argument list.
Invocation: Primary Arguments
The invoked expression must be of type R(*P)
 for some types R and P. Then the type of the
 invocation expression is simply R.
If the invoked expression has no type, and occurs within a dynamic
 block, then the whole invocation expression has no type, and the argument list is
 not type-checked at compile time, unless it is a direct invocation expression.
An invocation expression must specify arguments for parameters of the callable
 object, either as a positional argument list, or as a named argument list.
Arguments: PositionalArguments | NamedArguments
Every argument list has a type, as specified below in
 the section called “Positional argument lists” and the section called “Named argument lists”. If an
 invocation is formed from a callable expression of type exactly
 R(*P) and an argument list of type
 A, then A must be a subtype of
 P.
Direct invocations

Any invocation expression where the invoked expression is a callable
 reference expression is called a direct invocation expression
 of the function, class, or callable constructor to which the callable reference
 refers.
A direct invocation expression of a callable reference expression that
 refers to a class or constructor is called a (direct)
 instantiation expression.
TODO: Should we consider x{y=1;}{z=2;} a legal
 direct invocation if x has multiple parameter lists?

In a direct invocation expression:
	the compiler has one item of additional information about the schema
 of the method or class that is not reified by the Callable
 interface: the names of the parameters of the function, class, or callable
 constructor, and therefore named arguments may be used, and

	type argument inference is possible, as defined in
 the section called “Type argument inference”, since the compiler has access to
 the type parameters and constraints of the function or class, or of the class
 to which the callable constructor belongs.

If an invocation expression has a named argument list, it must be a direct
 invocation.
The type of a direct invocation expression is the return type of the
 realization of the function, or the type of the realization of the class, as
 defined in the section called “Realizations”.
If the function has no return type, and occurs within a dynamic
 block, then the whole direct invocation expression has no type.
In a direct invocation expression of a function, class, or callable
 constructor, the restriction above on the argument list type is equivalent to the
 following requirements. Given the parameter list of the realization of the function,
 class, or callable constructor, and the arguments of the direct invocation:
	for each required parameter, an argument must be given,

	for each defaulted parameter, an argument may optionally be
 given,

	if the parameter list has a variadic parameter of type
 T+, one or more arguments must be given,

	if the parameter list has a variadic parameter of type
 T*, one or more arguments may optionally be
 given,

	no additional arguments may be given,

	for a required or defaulted parameter of type T,
 the type of the corresponding argument expression must be assignable to
 T, and

	for a variadic parameter of type T* or
 T+, the type of every corresponding argument
 expression must be assignable to T.

Furthermore, if type argument are inferred, then the inferred type
 arguments must conform, as defined by the section called “Type arguments and type constraints”,
 to the type parameter list of the realization of the function or class, or
 class to which the callable constructor belongs.
If an argument expression has no type, or if its parameter has no type,
 and the invocation occurs within a dynamic block, then the
 argument is not type-checked at compile time.
An invocation expression that does not occur within any dynamic
 block may not assign an argument to a value parameter with no type.

Default arguments

When no argument is assigned to a defaulted parameter by the caller,
 the default argument defined by the parameter declaration of the realization,
 as defined by the section called “Type arguments and type constraints”, of the function,
 class, or callable constructor is used. The default argument expression is
 evaluated every time the method is invoked with no argument specified for the
 defaulted parameter.
This class:
shared class Counter(Integer initialCount=0) { ... }
May be instantiated using any of the following invocations:
Counter()
Counter(1)
Counter {}
Counter { initialCount=10; }

The type of a list of arguments

A list of arguments may be formed from:
	any number of listed arguments,
 optionally followed by either

	a spread argument, or

	a comprehension.

ArgumentList: ((ListedArgument ",")* (ListedArgument | SpreadArgument | Comprehension))?
Every such list of arguments has a type, which captures the types of
 the individual arguments in the list. This type is always a subtype of
 Anything[]. The type of an empty list of arguments is
 [].

Listed arguments

A listed argument is an expression.
ListedArgument: Expression
If a listed argument is an expression of type T, and
 a list of arguments has type P with principal instantiation
 Sequential<Y>, then the type of a new argument list
 formed by prepending the expression to the first parameter list is
 Tuple<T|Y,T,P>.

Spread arguments

A spread argument is an expression prefixed by the
 spread operator *.
SpreadArgument: "*" ValueExpression
The spread operator is parsed with a precedence just lower than
 the multiplication operator * and just higher than
 the set union and complement operators | and
 ~, and is not associative.
Note: this restriction means that the symbol *
 always has the same precedence, wherever it occurs in the language.

The expression type T must have the principal
 instantiation {X*} for some type X.
 We form the sequential type of a spread argument as
 follows:
	if the expression type T is an invariant
 subtype of X[], for some type X
 then the sequential type of the spread argument is
 T, or, if not,

	if the expression type T is an invariant
 subtype of {X+}, for some type X
 then the sequential type of the spread argument is
 [X+], or, otherwise,

	the expression type T is an invariant
 subtype of {X*}, for some type X
 and the sequential type of the spread argument is
 X[].

When a spread argument with an expression type not assignable to
 Anything[] is evaluated, the elements of the iterable
 automatically are packaged into a sequence.
Note: the spread "operator" is not truly an operator in the
 sense of the section called “Operators”, and so a spread argument is not an
 expresson. An expression, when evaluated, produces a single value. The
 spread operator produces multiple values. It is therefore more correct to
 view the spread operator as simply part of the syntax of an argument list.

The type of a list of arguments containing only a spread argument of
 sequential type S is simply S.

Comprehensions

A comprehension accepts one or more streams of values
 and produces a new stream of values. Any instance of Iterable
 is considered a stream of values. The comprehension has two or more
 clauses:
	A for clause specifies a source stream and an
 iterator pattern, as defined in the section called “for/else”, representing
 the values produced by the stream.

	An if clause specifies a condition list, as
 defined in the section called “Conditions”, used to filter
 the values produced by the source stream or streams.

	An expression clause produces the values of the resulting stream.

Every comprehension begins with a for or if
 clause, and ends with an expression clause. There may be any number of intervening
 for or if clauses. Each clause in the
 comprehension is considered a child of the clause that immediately precedes
 it.
Comprehension: ForComprehensionClause | IfComprehensionClause
ForComprehensionClause: "for" ForIterator ComprehensionClause
IfComprehensionClause: "if" ConditionList ComprehensionClause
ComprehensionClause: ForComprehensionClause | IfComprehensionClause | Expression
An expression that occurs in a child clause may refer to iteration
 variables and condition variables declared by parent clauses. The types
 of such variables are specified in the section called “Control structures and assertions”.
Note: each child clause can be viewed as a body nested inside
 the parent clause. The scoping rules for variables declared by comprehension
 clauses reflects this model.

The type of a list of arguments containing only a comprehension is
 [T*] where T is the type of the
 expression which terminates the comprehension, or [T+] if
 there are no if clauses, and if every for
 clause has an iterated expression of nonempty type.
Note: a comprehension, like a spread argument, is not considered
 an expression. An expression, when evaluated, produces a single value. A
 comprehension produces multiple values, like a spread argument, or like a series
 of listed arguments. Therefore, a comprehension may only appear in an argument
 list or an enumeration expression. This is, however, no limitation; we can simply
 wrap the comprehension in braces in order to get an expression of type
 {T*}, or in brackets to get an expression of type
 [T*].

TODO: properly define how expressions with no type occurring in a
 dynamic block affect comprehensions.

Positional argument lists

When invocation arguments are listed positionally, the argument list is
 enclosed in parentheses.
PositionalArguments: "(" ArgumentList ")"
The type of the positional argument list is the type of the list of arguments
 it contains.

Named argument lists

When invocation arguments are listed by name, the argument list is enclosed
 in braces.
NamedArguments: "{" NamedArgument* ArgumentList "}"
Named arguments may be listed in a different order to the corresponding
 parameters.
Each named argument in a named argument list is either:
	an anonymous argument—an expression, with
 no parameter name explicitly specified,

	a specified argument—a specification
 statement where name of the value of function being specified is interpreted
 as the name of a parameter, or

	an inline getter, function, or anonymous class declaration, whose name
 is interpreted as the name of a parameter.

NamedArgument: AnonymousArgument | SpecifiedArgument | InlineDeclarationArgument
Additionally, a named argument list has an ordinary list of arguments, which
 may be empty. This argument list is interpreted as a single argument to a parameter
 of type Iterable.
{ initialCapacity=2; "hello", "world" }
{ initialCapacity=people.size; loadFactor=0.8; for (p in people) p.name->p }
Note: in a future release of the language, we would like to be able
 to assign a local name to an anonymous argument or listed argument, allowing it to
 be referenced later in the argument list. We might consider this a kind of "let"
 expression, perhaps.

An inline declaration argument or an ordinary list of arguments occurring in
 an extends clause of a class may not contain a reference to a
 variable attribute of the class.
Given a parameter list, and a named argument list, we may attempt to construct
 an equivalent positional argument list as follows:
	Taking each argument in the named argument list in turn, on the order
 they occur lexically:
	if the argument is anonymous, assign it to the first unassigned
 parameter of the parameter list, or

	if the argument is named, assign it to the parameter with that
 name in the parameter list.

If, for some argument, there is no unassigned parameter, no parameter
 with the given name, or the parameter with the given name has already been
 assigned an argument, construction of the positional argument list fails, and
 the invocation is not well-typed.

	Next, if the parameter list has an unassigned parameter of type exactly
 Iterable<T,N> for some types T and
 N, then an iterable enumeration expression, as defined in
 the section called “Iterable and tuple enumeration”, is formed from the ordinary list of arguments,
 and assigned to that parameter.
If there is no such parameter, and the ordinary list of arguments is
 nonempty, then construction of the positional argument list fails, and the
 invocation is not well-typed.

	Finally, we assign each unassigned defaulted parameter its default
 argument.

The resulting equivalent positional argument list is formed by ordering
 the arguments according to the position of their corresponding parameters in
 the parameter list, and then replacing any inline value, function, or object
 declarations with a reference to the declaration.
The type of a named argument list is the type of the equivalent positional
 argument list.

Anonymous arguments

An anonymous argument is just an expression followed by a semicolon.
AnonymousArgument: Expression ";"
The type of the argument is the type of the expression.
{
 Head { title="Hello"; };
 Body {
 Div { "Hello ``name``!" };
 };
}

Specified arguments

A specified argument is a value specification statement or lazy specification
 statement, as defined in the section called “Specification statements”, where the value
 reference or callable reference is treated as the name of a parameter of the invoked
 function or class instead of using the usual rules for resolving unqualified names.
SpecifiedArgument: Specification
	If a specified argument is a value specification statement, its type
 is the type of the specified expression.

	If a specified argument is a lazy specification statement with no
 parameter lists, its type is the type of the specified expression.

	Otherwise, if it is a lazy specification statement with a parameter
 list, its type is the callable type formed from the type of the expression,
 interpreted as a function return type, and the types of its parameter lists,
 according to the section called “Callable type of a function”.

Note: there is an ambiguity here between assignment expressions
 and specified arguments. This ambiguity is resolved in favor of interpreting the
 argument as a specified argument. Therefore an anonymous argument in a named
 argument list may not be an assignment expression.

{
 product = getProduct(id);
 quantity = 1;
}
{
 by(Value x, Value y) => x<=>y;
}

Inline declaration arguments

An inline declaration argument defines a getter,
 function, or anonymous class, and assigns it to a parameter.
InlineDeclarationArgument: ValueArgument | FunctionArgument | ObjectArgument
An inline getter argument is a streamlined value declaration, as defined
 in the section called “Values”. The type of the argument is the declared or inferred
 type of the value.
ValueArgument: ValueHeader (Block | (Specifier | LazySpecifier) ";")
An inline function argument is a streamlined function declaration, as
 defined in the section called “Functions”. The type of the argument is the callable
 type of the function, as defined by the section called “Callable type of a function”.
FunctionArgument: FunctionHeader (Block | LazySpecifier ";")
An inline anonymous class argument is a streamlined anonymous class
 declaration, as defined in the section called “Anonymous classes”. The type of the
 argument is the anonymous class type.
ObjectArgument: ObjectHeader ClassBody
A named argument may not have type parameters or annotations.
{
 description = "Total";
 value amount {
 variable Float total = 0.0;
 for (Item item in items) {
 sum += item.amount;
 }
 return total;
 }
}
{
 label = "Say Hello";
 void onClick() {
 say("Hello!");
 }
}
{
 function by(Value x, Value y) => x<=>y;
}
{
 object iterator
 satisfies Iterator<Order> {
 variable value done = false;
 shared actual Order|Finished next() {
 if (done) {
 return finished;
 }
 else {
 done=true;
 return order;
 }
 }
 }
}

Iterable and tuple enumeration

An enumeration expression is an abbreviation for
 tuple and iterable object instantiation. Iterable enumerations are delimited
 using braces. Tuple enumerations are delimited by brackets.
Enumeration: Iterable | Tuple | DynamicValue
Iterable: "{" ArgumentList "}"
Tuple: "[" ArgumentList "]"
The type of an iterable enumeration expression is:
	Iterable<Nothing,Null> if there are no
 argument expressions, or

	Iterable<U,Nothing> where
 U, the argument expression list is an invariant
 suptype of U[].

The type of a tuple enumeration expression is the type of the list of
 arguments it contains.
{String+} = { "hello", "world" };
[] none = [];
[Float,Float] xy = [x, y];
[Float,Float, String*] xy = [x, y, *labels];
Every argument expression must have a type, even if the enumeration expression
 occurs in a dynamic block.
An iterable enumeration expression occurring in an extends
 clause of a class may not contain a reference to a variable attribute of the class.

Dynamic enumerations

A dynamic enumeration expression creates a new
 object with no class by enumerating its members, allowing interoperation
 with dynamically typed native code.
DynamicValue: "dynamic" "[" NamedArgument* ArgumentList "]"
A dynamic enumeration expression has no type.
Any argument names may be specified in the named argument list.
A dynamic enumeration expression must occur inside a
 dynamic block.
The semantics of this construct are platform-dependent and
 beyond the scope of this specification.

Conditional expressions, let expressions, and anonymous class expressions

A conditional expression resembles a control
 structure but is part of the expression syntax, and evaluates to a value.
 A conditional expression comes in one of two forms:
	an if/then/else expression resembles
 the if/else conditional defined in
 the section called “if/else”, and

	a switch/case/else expression resembles
 the switch/case/else conditional defined in
 the section called “switch/case/else”.

ConditionalExpression: IfElseExpression | SwitchCaseElseExpression
A let expression allows inline definition of a
 reference within an expression.
An inline class is an anonymous class defined
 within an expression.
if/then/else expressions

An if/then/else expression has a condition
 list, as defined in the section called “Conditions”, a
 then expression, and an else
 expression. The else expression is not optional.
IfElseExpression: "if" ConditionList ThenExpression ElseExpression
The type of an if/then/else expression with
 then expression of type X and
 else or else if expression of
 type Y is X|Y.
ThenExpression: "then" Expression
ElseExpression: "else" Expression
The expression following then or
 else is parsed with precedence just higher than the
 || operator, and just lower than the
 then and else operators, that is,
 between the layers 3 and 4 defined in
 the section called “Operator precedence”.
Alternatively, the expression following then
 or else may be an if/then/else
 expression or a let expression.
Note: the expression following then
 or else may not be a switch/case/else
 expression, since that would introduce an ambiguity related to the optional
 else clause of the switch/case/else
 expression.

if (exists lang) then lang.name else "Ceylon"

switch/case/else expressions

A switch/case/else expression has a
 switch expression or inline variable, a list of
 case expressions, and, optionally, an
 else expression.
SwitchCaseElseExpression: Switch CaseExpression+ ElseExpression
The type of a switch/case/else expression
 with case expressions of type X1,
 X2, ..., Xn and
 else expression of type Y is
 X1|X2|...|Xn|Y.
CaseExpression: "case" CaseCondition Expression
The expression following case or
 else is parsed with precedence just higher than the
 || operator, and just lower than the
 then and else operators, that is,
 between the layers 3 and 4 defined in
 the section called “Operator precedence”.
Alternatively, the expression following then
 or else may be an if/then/else
 expression or a let expression.
Each case expression includes a value case or
 type case, as defined in the section called “Case conditions”. Just like
 in a switch/case/else conditional statement:
	all cases must be disjoint, and

	if there is no else expression,
 the cases must be exhaustive.

switch (seq) case (null) "null" case (is []) "empty" else "nonempty"

Let expressions

A let expression comprises a pattern list, followed by an
 expression involving the pattern variables that occur in the listed
 patterns.
LetExpression: "let" PatternList Expression
The expression is parsed with precedence just higher than the
 || operator, and just lower than the
 then and else operators, that
 is, between the layers 3 and 4 defined in
 the section called “Operator precedence”.
Alternatively, the expression may be an if/then/else
 expression or another let expression.
A pattern list is enclosed in parentheses.
PatternList: "(" PatternListElement ("," PatternListElement)* ")"
Each element of the pattern list is a pattern, as defined in
 the section called “Patterns”, followed by a specified expression. The
 patterned type is the type of the specified expression.
PatternListElement: Pattern Specifier
The pattern variables that occur in the pattern list are
 considered in scope in the expression that follows the pattern
 list. Furthermore, a specified expression in the pattern list
 may refer to a pattern variable declared by an earlier element
 in the pattern list.
let ([x,y] = loc, d = sqrt(x^2+y^2)) [x/d, y/d]

Inline anonymous class expressions

An inline anonymous class expression resembles an anonymous
 class declaration as defined in the section called “Anonymous classes”.
 The expression defines the schema, supertypes, and implementation
 of a class. It does not specify a type name. Instead, the type has
 a name assigned internally by the compiler that is not available at
 compilation time.
ObjectExpression: "object" ObjectInheritance ClassBody
The class:
	is implicitly final, and

	may not declare default members.

The type of an inline anonymous class expression is the
 intersection of the class type it extends with all interface types
 it satisfies. The type of the inline anonymous class itself is not
 accessible outside the body of the inline anonymous class expression.
object
 satisfies {Integer+} {
 iterator() => object
 satisfies Iterator<Integer> {
 variable value current = 0;
 next() => current++;
 };
}
An inline anonymous class expression occurring in an
 extends clause of a class may not contain a
 reference to a variable attribute of the class.

Operators

Operators are syntactic shorthand for more complex expressions involving
 invocation, evaluation, or instantiation. There is no support for user-defined
 operator overloading:
	new operator symbols may not be defined outside of the operators
 specified below, and

	the definition of the operators specified below may not be changed
 or overloaded.

However, many of the operators below are defined in terms of
 default or formal methods or attributes.
 So, within well-defined limits a concrete implementation may customize the
 behavior of an operator. This approach is called
 operator polymorphism.
Some examples:
Float z = x * y + 1.0;
even = n % 2 == 0;
++count;
Integer j = i++;
if (x > 100 || x < 0) { ... }
User user = users[userId] else guest;
List<Item> firstPage = results[0..20];
for (n in 0:length) { ... }
if (char in 'A'..'Z') { ... }
String[] names = people*.name;
this.total += item.price * item.quantity;
Float vol = length^3;
Vector scaled = scale ** vector;
map.contains(person.name->person);
if (!document.internal || user is Employee) { ... }
Operator precedence

There are 19 distinct operator precedence levels, but these levels
 are arranged into layers in order to make them easier to predict.
	Operators in layer 1 produce, transform, and combine
 values.

	Operators in layer 2 compare or predicate values, producing
 a Boolean result.

	Operators in layer 3 are logical operators that operate
 upon Boolean arguments to produce a Boolean
 value.

	Operators in layer 4 perform assignment and conditional
 evaluation.

Within each layer, postfix operators have a higher precedence than
 prefix operators, and prefix operators have a higher precedence than
 binary operators.
There is a single exception to this principle: the binary
 exponentiation operator ^ has a higher precedence than
 the prefix operators + and -. The
 reason for this is that the following expressions should be equivalent:
-x^2 //means -(x^2)
0 - x^2 //means 0 - (x^2)
This table defines the relative precedence of the various operators,
 from highest to lowest, along with associativity rules:
Table 6.1.
	Operations	Operators	Type	Associativity
	Layer 1
	Member invocation and selection, index, subrange:	
 .,
 *.,
 ?.,
 (),
 {},
 [],
 [:],
 [..],
 [...]
 	Binary / N-ary	Left
	Postfix increment and decrement:	
 ++,
 --
 	Unary postfix	Left
	Prefix increment and decrement:	
 ++,
 --
 	Unary prefix	Right
	Exponentiation:	
 ^
 	Binary	Right
	Negation:	
 +,
 -
 	Unary prefix	Right
	Set intersection:	
 &
 	Binary	Left
	Set union and complement:	
 |,
 ~
 	Binary	Left
	Multiplication, division, remainder:	
 *,
 /,
 %
 	Binary	Left
	Scale:	
 **
 	Binary	Right
	Addition, subtraction:	
 +,
 -
 	Binary	Left
	Range and entry construction:	
 ..,
 :,
 ->
 	Binary	None
	Layer 2
	Existence, emptiness:	exists, nonempty	Unary postfix	None
	Comparison, containment,
 assignability, inheritance:	
 <=>,
 <,
 >,
 <=,
 >=,
 in,
 is,
 of
 	Binary (and ternary)	None
	Equality, identity:	
 ==,
 !=,
 ===
 	Binary	None
	Layer 3
	Logical not:	!	Unary prefix	Right
	Logical and:	
 &&
 	Binary	Left
	Logical or:	
 ||
 	Binary	Left
	Layer 4
	Conditionals:	then,
 else	Binary	Left
	Assignment:	
 =,
 +=,
 -=,
 *=,
 /=,
 %=,
 &=,
 |=,

 ~=,
 &&=,
 ||=

 	Binary	Right

It's important to be aware that in Ceylon, compared to other C-like
 languages, the logical not operator ! has a very low
 precedence. The following expressions are equivalent:
!x.y == 0.0 //means !(x.y == 0.0)
x.y != 0.0

Operator definition

The following tables define the semantics of the Ceylon operators.
 There are six basic operators which do not have a definition in terms of
 other operators or invocations:
	the member selection operator
 . separates the receiver expression and member
 name in a member expression, as defined above in
 the section called “Member expressions”,

	the argument specification operators
 () and {} specify the
 argument list of an invocation, as defined in
 the section called “Invocation expressions” and
 the section called “Invocation”,

	the assignment operator
 = assigns a new value to a variable and
 returns the new value after assignment, as defined in
 the section called “Assignment”,

	the identity operator
 === evaluates to true
 if its argument expressions evaluate to references to the same
 object, as defined in the section called “Object instances, identity, and reference passing”,
 or to false otherwise,

	the assignability operator
 is evaluates to true if
 its argument expression evaluates to an instance of a class, as
 defined in the section called “Object instances, identity, and reference passing”, that is a
 subtype of the specified type, or to false
 otherwise, and

	the coverage operator
 of narrows or widens the type of an expression
 to any specified type that covers the expression type, as defined
 by the section called “Coverage”, without affecting the value of the
 expression.

All other operators are defined below in terms of other operators
 and/or invocations.

Basic invocation and assignment operators

These operators support method invocation and attribute evaluation and
 assignment.
Table 6.2.
	Example	Name	Definition	LHS type	RHS type	Return type
	Invocation
	lhs.member	member	 	X	a member of X, of type
 T	T
	lhs(x,y,z) or
 lhs{a=x;b=y;}	invoke	 	T(*P)	argument list of type P	T
	Assignment
	lhs = rhs	assign		variable of type X	X	X
	Coverage
	lhs of Type	of		X	a literal type T that covers
 X	T

Equality and comparison operators

These operators compare values for equality, order, magnitude, or membership,
 producing boolean values.
Table 6.3.
	Example	Name	Definition	LHS type	RHS type	Return type
	Equality and identity
	lhs === rhs	identical		X given X satisfies Identifiable	Y given Y satisfies Identifiable
 where X&Y is not Nothing	Boolean
	lhs == rhs	equal	lhs.equals(rhs)	Object	Object	Boolean
	lhs != rhs	not equal	!lhs.equals(rhs)	Object	Object	Boolean
	Comparison
	lhs <=> rhs	compare	lhs.compare(rhs)	Comparable <T>	T	Comparison
	lhs < rhs	smaller	lhs.compare(rhs)==smaller	Comparable <T>	T	Boolean
	lhs > rhs	larger	lhs.compare(rhs)==larger	Comparable <T>	T	Boolean
	lhs <= rhs	small as	lhs.compare(rhs)!=larger	Comparable <T>	T	Boolean
	lhs >= rhs	large as	lhs.compare(rhs)!=smaller	Comparable <T>	T	Boolean
	Containment
	lhs in rhs	in	let (x=lhs) rhs.contains(x)	Object	Category	Boolean
	Assignability
	rhs is Type	is	 	any type which is not a subtype of
 T, whose intersection with
 T is not Nothing	any literal type T	Boolean

TODO: Should we have allow the operators <=
 and >= to handle partial orders? A particular usecase is
 Set comparison.

A bounded comparison is an abbreviation
 for two binary comparisons:
	l<x<u means
 let (t=x) l<t && t<u,

	l<=x<u means
 let (t=x) l<=t && t<u,

	l<x<=u means
 let (t=x) l<t && t<=u, and

	l<=x<=u means
 let (t=x) l<=t && t<=u

for expressions l, u,
 and x.
These abbreviations have the same precedence as the binary
 < and <= operators, and,
 like the binary forms, are not associative.

Logical operators

These are the usual logical operations for boolean values.
Table 6.4.
	Example	Name	Definition	LHS type	RHS type	Return type
	Logical operators
	!rhs	not	if (rhs) then false else true	 	Boolean	Boolean
	lhs || rhs	conditional or	if (lhs) then true else rhs	Boolean	Boolean	Boolean
	lhs && rhs	conditional and	if (lhs) then rhs else false	Boolean	Boolean	Boolean
	Logical assignment
	lhs ||= rhs	conditional or	if (lhs) then true else lhs=rhs	variable of type Boolean	Boolean	Boolean
	lhs &&= rhs	conditional and	if (lhs) then lhs=rhs else false	variable of type Boolean	Boolean	Boolean

Operators for handling null values

These operators make it easy to work with optional expressions.
Table 6.5.
	Example	Name	Definition	LHS type	RHS type	Return type
	Existence
	lhs exists	exists	if (exists lhs) then true else false	any type whose intersections with Object
 and Null are not Nothing	 	Boolean
	lhs nonempty	nonempty	if (nonempty lhs) then true else false	any subtype of Anything[]?
 whose intersections with [] and
 [Nothing+] are not Nothing	 	Boolean
	Nullsafe invocation
	lhs?.member	nullsafe attribute	if (exists lhs) then lhs.member else null	X?	an attribute of type T
 of X	T?
	lhs?.member	nullsafe method	 	X?	a method of callable type
 T(*P)
 of X
 with exactly one parameter list	T?(*P)

Correspondence, subrange, and stream operators

These operators provide a simplified syntax for accessing values
 of a Correspondence, for obtaining subranges of
 Ranged objects, and for spreading member access
 over a stream.
Table 6.6.
	Example	Name	Definition	LHS type	RHS type	Return type
	Keyed item access
	lhs[index]	lookup	lhs.get(index)	Correspondence<X,Y>	X	Y?
	Subranges
	lhs[from:length]	measured subrange	lhs.measure(from,length)	Ranged<X,Y,Z>	X, Integer	Z
	lhs[from..to]	spanned subrange	lhs.span(from,to)	Ranged<X,Y,Z>	X, X	Z
	lhs[from...]	upper spanned subrange	lhs.spanFrom(from)	Ranged<X,Y,Z>	X	Z
	lhs[...to]	lower spanned subrange	lhs.spanTo(to)	Ranged<X,Y,Z>	X	Z
	Spread invocation
	lhs*.attribute	spread attribute	[*lhs.map(X.attribute)]	Iterable<X,N>	attribute of X of
 type T	[T*] or [T+]
	lhs*.method	spread method	compose((Iterable<T,N> ts)=>[*ts], lhs.spread(X.method))	Iterable<X,N>	method of X of
 callable type T(*P)
 with exactly one parameter list	[T*](*P) or
 [T+](*P)
	Spread multiplication
	lhs ** rhs	scale	rhs.scale(lhs)	X	Scalable<X,Y>	Y

Operands within brackets in any subrange operator are parsed as if they
 were operands of the .. or : operators.
Note: an ambiguity exists in interpretation of expressions like
 map[n..m] and map[0:l], where the expression
 could in principle be interpreted as a lookup operator applied to a range
 constructor. This ambiguity is always resolved in favor or interpreting the
 expression as a subrange operator.

There are two special cases related to sequences. A type X
 is a sequence type if X is a subtype of
 Sequential<Anything>.
For any sequence type X with principal instantiation
 [E*] and integer n, we can form the
 nth tail type, Xn, of
 X as follows:
	for every i<=0, Xi
 is X,

	for every i>0, if Xi
 has the principal instantiation Tuple<Ui,Fi,Ti>
 then X(i+1) is Ti, or, if
 Xi has principal instantiation [Fi*]
 then X(i+1) is [Fi*], or, otherwise,
 if Xi is [], then X(i+1)
 is also [].

For any sequence type X and integer n,
 we can form the nth element type, En,
 of X as follows:
	if n>=0 and Xn
 has the principal instantiation [Fn+] then
 En is Fn, or,

	otherwise, Xn has the principal
 instantiation [Fn*] and En
 is Fn?.

Then the two special cases are:
	The type of an expression of form x[n] where
 x is of the sequence type X and
 n is an integer literal is En.

	The type of an expression of form x[n...] where
 x is of the sequence type X and
 n is an integer literal is Xn if
 Xn is an instantiation of Tuple,
 [Fn+] if Xn has the principal
 instantiation [Fn+], or [Fn*]
 if Xn has the principal instantiation
 [Fn*].

Operators for creating objects

These operators simplify the syntax for instantiating certain
 commonly used built-in types.
Table 6.7.
	Example	Name	Definition	LHS type	RHS type	Return type
	Range and entry constructors
	lhs..rhs	spanned range	span(lhs, rhs)	T given T satisfies Enumerable<T>	T	Range<T>
	lhs:rhs	measured range	measure(lhs,rhs)	T given T satisfies Enumerable<T>	Integer	Range<T>|[]
	lhs->rhs	entry	Entry(lhs, rhs)	U given U satisfies Object	V	Entry<U,V>

Conditional operators

Two special operators allow emulation of the famous ternary
 operator of C-like languages.
Table 6.8.
	Example	Name	Definition	LHS type	RHS type	Return type
	Conditionals
	lhs then rhs	then	if (lhs) then rhs else null	Boolean	T given T satisfies Object	T?
	lhs else rhs	else	if (exists lhs) then lhs else rhs	U such that null is U	V	U&Object|V

Arithmetic operators

These are the usual mathematical operations for all kinds of
 numeric values.
Table 6.9.
	Example	Name	Definition	LHS type	RHS type	Return type
	Increment, decrement
	++rhs	successor	rhs=rhs.successor	 	variable of type Ordinal<T>	T
	--rhs	predecessor	rhs=rhs.predecessor	 	variable of type Ordinal<T>	T
	lhs++	increment	let (x = lhs, _ = lhs = lhs.successor) x	variable of type Ordinal<T>	 	T
	lhs--	decrement	let (x = lhs, _ = lhs = lhs.predecessor) x	variable of type Ordinal<T>	 	T
	Numeric operators
	+rhs	 	rhs	 	Invertible <I>	I
	-rhs	negation	rhs.negated	 	Invertible <I>	I
	lhs + rhs	sum	lhs.plus(rhs)	Summable<X>	X	X
	lhs - rhs	difference	lhs.minus(rhs)	Invertible <X>	X	X
	lhs * rhs	product	lhs.times(rhs)	Numeric<X>	X	X
	lhs / rhs	quotient	lhs.divided(rhs)	Numeric<X>	X	X
	lhs % rhs	remainder	lhs.remainder(rhs)	Integral<X>	X	X
	lhs ^ rhs	power	lhs.power(rhs)	Exponentiable <X,Y>	Y	X
	Numeric assignment
	lhs += rhs	add	lhs=lhs.plus(rhs)	variable of type Summable<N>	N	N
	lhs -= rhs	subtract	lhs=lhs.minus(rhs)	variable of type Invertible <N>	N	N
	lhs *= rhs	multiply	lhs=lhs.times(rhs)	variable of type Numeric<N>	N	N
	lhs /= rhs	divide	lhs=lhs.divided(rhs)	variable of type Numeric<N>	N	N
	lhs %= rhs	remainder	lhs=lhs.remainder(rhs)	variable of type Integral<N>	N	N

Arithmetic operators automatically widen from Integer
 to Float when necessary. If one operand expression is
 of static type Integer, and the other is of type
 Float, the operand of type Integer
 is widened to a Float in order to make the operator
 expression well-typed. Widening is performed by evaluating the attribute
 float defined by Integer.
Note: this is the only circumstance in the language where
 implicit type conversion occurs. In fact, it is more correct to view this
 behavior as an instance of operator overloading than as an implicit type
 conversion. Implicit widening does not occur when an expression of type
 Integer is merely assigned to the type
 Float, since such behavior would result in ambiguities
 when generics come into play.

Set operators

These operators provide traditional mathematical operations for sets.
Table 6.10.
	Example	Name	Definition	LHS type	RHS type	Return type
	Set operators
	lhs | rhs	union	lhs.union(rhs)	Set<X>	Set<Y>	Set<X|Y>
	lhs & rhs	intersection	lhs.intersection(rhs)	Set<X>	Set<Y>	Set<X&Y>
	lhs ~ rhs	complement	lhs.complement(rhs)	Set<X>	Set<Object>	Set<X>
	Set assignment
	lhs |= rhs	union	lhs=lhs|rhs	variable of type Set<X>	Set<X>	Set<X>
	lhs &= rhs	intersection	lhs=lhs&rhs	variable of type Set<X>	Set<Object>	Set<X>
	lhs ~= rhs	complement	lhs=lhs~rhs	variable of type Set<X>	Set<Object>	Set<X>

Metamodel expressions

A metamodel expression is a reference to
 a type, a class, a function, a value, or a constructor. It evaluates
 to a metamodel object whose static type captures, respectively:
	the type itself,

	the callable type of the class,

	the callable type of the function,

	the type of the value,

	the type of the value constructor, or

	the callable type of the callable constructor.

Meta: TypeMeta | BaseMeta | MemberMeta | ConstructorMeta
A type metamodel expression is a type, as
 defined by the section called “Types”, surrounded by backticks.
TypeMeta: "`" Type "`"
The type may or may not be a reference to a class or interface.
Class<Person,[Name]> personClass = `Person`;
Interface<List<String>> stringListInterface = `List<String>`;
UnionType<Integer|Float> numberType = `Number`;
Type<Element> elementType = `Element`;
A base metamodel expression is a member name,
 with an optional list of type arguments, surrounded by backticks.
BaseMeta: "`" PackageQualifier? MemberName TypeArguments? "`"
A base metamodel expression is a reference to a value or function.
 The referenced declaration is determined according to
 the section called “Unqualified reference resolution”.
A member metamodel expression is a qualifier,
 followed by a member name, with an optional list of type arguments,
 surrounded by backticks.
MemberMeta: "`" PrimaryType "." MemberName TypeArguments? "`"
The member metamodel expression is qualified by a type, as defined
 by the section called “Types”.
A member metamodel expression is a reference to an attribute or
 method of the type identified by the qualifier. The member is resolved
 as a member of the type according to
 the section called “Qualified reference resolution”.
Function<Float,[{Float+}]> sumFunction = `sum<Float>`;
Attribute<Person,String> personNameAttribute = `Person.name`;
Method<Person,Anything,[String]> personSayMethod = `Person.say`;
Attribute<\Isystem,Integer> systemMillis = `\Isystem.milliseconds`;
A constructor metamodel expression is a qualifier,
 followed by a constructor name, with an optional list of type arguments,
 surrounded by backticks.
ConstructorMeta: "`" PrimaryType "." ()MemberName | TypeName) TypeArguments? "`"
The constructor metamodel expression qualifier is a type that is an
 instantiation of a class.
A constructor metamodel expression is a reference to a constructor or
 of the class identified by the qualifier. The constructor is resolved as a
 member of the class according to
 the section called “Qualified reference resolution”.
Type argument inference is impossible in a metamodel expression,
 so type arguments must be explicitly provided for every generic
 declaration.
Type of a metamodel expression

The type of a metamodel expression depends upon the kind of
 declaration referenced:
	for a toplevel value of type R,
 the type is Value<R>,

	for a toplevel function of callable type
 R(*P), the type is
 Function<R,P>,

	for a toplevel class of callable type
 R(*P), the type is
 Class<R,P>,

	for a callable constructor of a toplevel class of
 callable type R(*P), the type is
 CallableConstructor<R,P>,

	for a value constructor of a toplevel class of
 type R, the type is
 ValueConstructor<R>,

	for a class nested in a block of callable type
 R(*P), the type is
 Class<R,Nothing>, and

	for a toplevel interface or interface nested
 in a block of type R, the type is
 Interface<R>.

Note: members of anonymous classes are treated as
 toplevels here.

Furthermore, given a member of a type T:
	for an attribute of type R, the
 type is Attribute<T,R>,

	for a method of callable type
 R(*P), the type is
 Method<T,R,P>,

	for a member class of callable type
 R(*P), the type is
 MemberClass<T,R,P>, and

	for a callable constructor of a member class of
 callable type R(*P), the type is
 MemberClassCallableConstructor<T,R,P>,
 and

	for a value constructor of a member class of
 type R, the type is
 MemberClassValueConstructor<T,R>,
 and

	for a value of a member class of type
 R, the type is
 Attribute<T,R>,
 and

	for a nested interface of type
 R, the type is
 MemberInterface<T,R>.

Finally:
	for a union type T, the type is
 UnionType<T>,

	for an intersection type T, the
 type is IntersectionType<T>,

	for the type Nothing, the type is
 Type<Nothing>, and

	for a type parameter T, the type is
 Type<T>.

If a type alias occurs inside a typed metamodel expression, it
 is replaced by its definition, after substituting type arguments,
 before determining the type of the metamodel expression.

Reference expressions

A reference expression is a reference to
 a program element and evaluates to a detyped metamodel of the program
 element. Reference expressions are used primarily in annotations,
 especially the documentation annotations listed in
 the section called “Documentation”. A reference expression may refer to:
	a class, interface, type alias, or type parameter,

	a function or value,

	a constructor, or

	a package or module.

Dec: TypeDec | MemberDec | ConstructorDec | PackageDec | ModuleDec
Declaration references

Declaration reference expressions may be qualified by a
 member declaration qualifier, a sequence
 of identifiers identifying a class or interface declaration or
 an anonymous class declaration:
MemberDecQualifier: ((TypeName | MemberName) ".")+
Each identifier in the member declaration qualifier is
 the name of a class, interface, or anonymous class.
A class reference expression,
 interface reference expression,
 alias reference expression, or
 type parameter reference expression is an
 optional member declaration qualifier, followed by the name of
 a class or anonymous class, interface, alias, or type parameter,
 with the keyword class, interface,
 alias, or given, respectively,
 surrounded by backticks.
TypeKeyword: "class" | "interface" | "alias" | "given"
TypeDec: "`" TypeKeyword (PackageQualifier? MemberDecQualifier? (TypeName | MemberName))? "`"
For a class or interface reference expression, the name of
 the class or interface is optional. In this case, the class or
 interface reference is to the immediately containing class or
 interface, if any, as defined in the section called “Self references”.
 For alias or type parameter reference expressions, the name of
 the alias or type parameter is required.
ClassDeclaration thisClass = `class`;
ClassDeclaration personClass = `class Person`;
ClassDeclaration thisInterface = `interface`;
InterfaceDeclaration stringListInterface = `interface List`;
AliasDeclaration numberAlias = `alias Number`;
TypeParameter elementTypeParameter = `given Element`;
CallableConstructorDeclaration arrayOfSizeConstructor = `new Array.ofSize`;
A value reference expression or
 function reference expression is an optional
 member declaration qualifier, followed by the name of a function,
 value, value constructor, or anonymous class, with the keyword
 value or function, surrounded
 by backticks.
MemberKeyword: "value" | "function"
MemberDec: "`" MemberKeyword PackageQualifier? MemberDecQualifier? MemberName "`"
A constructor reference expression is a
 member declaration qualifier, followed by the name of a callable
 constructor, with the keyword new, surrounded by
 backticks.
ConstructorKeyword: "new"
ConstructorDec: "`" ConstructorKeyword PackageQualifier? MemberDecQualifier TypeName "`"
A reference expression is a reference to a declaration. The
 referenced declaration is determined according to
 the section called “Unqualified reference resolution” and
 the section called “Qualified reference resolution”. The kind of the
 referenced declaration must match the kind of reference indicated
 by the keyword.
ValueDeclaration personNameAttribute = `value Person.name`;
FunctionDeclaration personSayMethod = `function Person.say`;
FunctionDeclaration processWriteMethod = `function process.write`;
ClassDeclaration processClass = `class process`;

Package and module references

A package reference expression is a package
 name, as defined by the section called “Packages”, with the keyword
 package, surrounded by backticks.
PackageDec: "`" "package" FullPackageName? "`"
The package name must refer to a package from which an
 import statement in the same compilation unit may
 import declarations, as defined by the section called “Imports”.
If there is no explicit package name, the package reference
 is to the package in which the package reference expression occurs.
Package currentPackage = `package`;
Package modelPackage = `package ceylon.language.meta.model`;
A module reference expression is a module
 name, as defined by the section called “Module names and version identifiers”,
 with the keyword module, surrounded by backticks.
ModuleDec: "`" "module" FullPackageName? "`"
The module name must refer to the module to which the
 compilation unit belongs, as specified by the section called “Source layout”,
 or to a module imported by the module to which the compilation unit
 belongs, as defined by the section called “Module descriptors”.
If there is no explicit module name, the module reference
 is to the package in which the module reference expression occurs.
Module currentModule = `module`;
Module languageModule = `module ceylon.language`;

Type of a reference expression

The type of a reference expression depends upon the kind of
 program element referenced:
	for a module, the type is
 Module,

	for a package, the type is
 Package,

	for a reference, the type is
 ReferenceDeclaration,

	for any other value, the type is
 ValueDeclaration,

	for a function, the type is
 FunctionDeclaration,

	for a callable constructor, the type is
 CallableConstructorDeclaration,

	for a value constructor, the type is
 ValueConstructorDeclaration,

	for a type parameter, the type is
 TypeParameter,

	for a type alias declared using the keyword
 alias, the type is
 AliasDeclaration,

	for a class with an initializer parameter list,
 or for any class alias, the type is
 ClassWithInitializerDeclaration,

	for a class with constructors, the type is
 ClassWithConstructorsDeclaration,
 and

	for an interface or interface alias, the type
 is InterfaceDeclaration.

For a reference to an anonymous class, the type depends
 upon the keyword, class, or value,
 specified in the reference expression:
	for a class reference expression, the type is
 ClassDeclaration, but

	for a value reference expression, the type is
 ValueDeclaration.

Chapter 7. Annotations

Annotations allow information to be attached to a
 declaration or assertion, and recovered at runtime via the use of the Ceylon
 metamodel. Annotations are used to specify:
	information used by the compiler while typechecking the program,

	API documentation for the documentation compiler,

	serialization of a class, and

	information needed by generic frameworks and libraries.

Annotations of program elements

Annotations occur at the very beginning of a declaration or assertion,
 in an annotation list.
"The user login action"
by ("Gavin King",
 "Andrew Haley")
throws (`class DatabaseException`,
 "if database access fails")
see (`function LogoutAction.logout`)
scope (session)
action { description="Log In"; url="/login"; }
shared deprecated
Annotation lists

An annotation is an initial lowercase identifier, optionally
 followed by an argument list.
Annotation: MemberName Arguments?
The annotation name is a reference to an annotation constructor,
 resolved according to the section called “Unqualified reference resolution”.
A list of annotations does not require punctuation between the
 individual annotations in the list. An annotation list may begin with
 a string literal, in which case it is interpreted as the argument of a
 doc annotation.
Annotations: StringLiteral? Annotation*
Every annotation is an invocation expression, as defined by
 the section called “Invocation expressions”, of an annotation constructor.
 The annotation name is interpreted as a base expression, as defined in
 the section called “Base expressions”.

Annotation arguments

For an annotation with no arguments, the argument list may be
 omitted, in which case the annotation is interpreted as having an empty
 positional argument list. Otherwise, the annotation argument list may be
 specified using one of two forms:
	Using a positional argument list, as defined in
 the section called “Positional argument lists”:
doc ("the name") String name;

	Using a named argument list, as defined in
 the section called “Named argument lists”:
doc { description="the name"; } String name;

As a special case, the name of the doc annotation
 and the parenthesis around its argument may be ommitted if it is the first
 annotation in an annotation list.
"the name" String name;
Operator expressions, member expressions, self references, anonymous
 functions, comprehensions, and string templates are not permitted in an
 annotation argument. Every base expression in an annotation argument must be
 a value reference to an anonymous class instance of an enumerated type, or
 must occur in a direct instantiation expression, as defined in
 the section called “Direct invocations”, for an annotation type.
A named argument to an annotation may not be an inline function, value,
 or anonymous class.

Annotation definition

Annotations are typesafe.
	An annotation constructor defines the
 schema of an annotation as it appears at a program element.

	An annotation type defines constraints
 upon which program elements can bear the annotation, and an API for
 accessing the information carried by an annotation.

Annotation constructors

An annotation constructor is a toplevel function
 that defines an annotation schema. An annotation constructor must be annotated
 annotation. An annotation constructor may not declare type
 parameters.
Each parameter of an annotation constructor must have one of the following
 types:
	Integer, Float,
 Character, or String,

	an enumerated type whose cases are all anonymous classes,
 such as Boolean,

	a subtype of Declaration in
 ceylon.language.meta.declaration,

	an annotation type,

	T? where T is a legal
 annotation constructor parameter type,

	{T*}, {T+},
 [T*], or [T+] where
 T is a legal annotation constructor parameter
 type, or

	any tuple type whose element types are legal annotation
 constructor parameter types.

A parameter of an annotation constructor may be variadic.
An annotation constructor must simply instantiate and return an instance
 of an annotation type. The body of an annotation constructor may not contain
 multiple statements. Operator expressions, member expressions, self references,
 anonymous functions, comprehensions, and string templates are not permitted in
 the definition of an annotation constructor. Every base expression in the body
 of an annotation constructor must be a reference to a parameter of the annotation
 constructor or to an anonymous class instance of an enumerated type, or must occur
 in a direct instantiation expression, as defined in
 the section called “Direct invocations”, for an annotation type.
A named argument appearing in the definition of an annotation constructor
 may not be an inline function, value, or anonymous class.
shared annotation Scope scope(ScopeType s) => Scope(s);
shared annotation Todo todo(String text) => Todo(text);
An annotation constructor parameter may have a default argument, which must
 be a legal annotation argument.
The return type of an annotation constructor must be a constrained annotation
 type, as defined below in the section called “Constrained annotation types”.
A user-defined annotation constructor may not return the same annotation
 type as one of the modifiers listed below in the section called “Declaration modifiers”.
Note: in future releases of the language we will let an annotation
 constructor return a sequence or tuple of annotation type instances.

Annotation types

Annotation constructors produce instances of annotation
 types. An annotation type is a class annotated annotation.
 An annotation type may not be a generic type with type parameters. An
 annotation type must have an empty initializer section.
Note: currently every annotation type must be a
 final class which directly extends Basic
 in ceylon.language.

Each initializer parameter of an annotation type must have one of the
 following types:
	Integer, Float,
 Character, or String,

	an enumerated type whose cases are all anonymous classes,
 such as Boolean,

	a subtype of Declaration in
 ceylon.language.meta.declaration,

	an annotation type,

	T? where T is a legal
 annotation parameter type,

	{T*}, {T+},
 [T*], or [T+] where
 T is a legal annotation parameter type, or

	any tuple type whose element types are legal annotation
 parameter types.

An initializer parameter of an annotation type may be variadic.
An initializer parameter of an annotation type may have a default argument,
 which must be a legal annotation argument.

Constrained annotation types

A constrained annotation type is an annotation type
 that is a subtype of OptionalAnnotation or
 SequencedAnnotation defined in the package
 ceylon.language.
	If A is a subtype of
 OptionalAnnotation, at most one annotation of
 annotation type A may occur at a given program
 element.

	If A is a subtype of
 SequencedAnnotation, multiple annotations of
 annotation type A may occur at a given program
 element.

	If A is a subtype of
 ConstrainedAnnotation<A,B,P,T>, then an
 annotation of annotation type A may not occur
 at a program element whose reference expression type, as defined in
 the section called “Type of a reference expression”, is not assignable to
 P.

	If A is a subtype of
 ConstrainedAnnotation<A,B,P,T> where
 T is not exactly Anything,
 then an annotation of annotation type A may not
 occur at a program element whose metamodel type, as defined in
 the section called “Type of a metamodel expression”, is not assignable to
 T.

shared final annotation class Scope(shared ScopeType scope)
 satisfies OptionalAnnotation<Scope,ClassOrInterfaceDeclaration> {
 string => (scope==request then "request")
 else (scope==session then "session")
 else (scope==application then "application")
 else nothing;
}
shared final annotation class Todo(String text)
 satisfies SequencedAnnotation<Todo> {
 string => text;
}
Note: it is perfectly acceptable for multiple annotation
 constructors to return the same annotation type.

Annotation values

An annotation value is the value returned when an
 annotation constructor is invoked. We may obtain the annotation values of all
 annotations of a given annotation type that occur at a given program element
 by passing the annotation type metamodel, as defined in
 the section called “Metamodel expressions”, and program element reference, as
 defined in the section called “Reference expressions”, to the method
 annotations() defined in the package
 ceylon.language.meta.model.
Scope scope = annotations(`Scope`, `class Person`) else Scope(request);
Todo[] todos = annotations(`Todo`, `function method`);

Language annotations

Certain important annotations are predefined in the module
 ceylon.language.
Declaration modifiers

The following annotations, called modifiers,
 are compiler instructions that affect the compilation process:
	shared specifies that a
 declaration is visible outside of the package or body in
 which it occurs, as specified in the section called “Visibility”,
 or that a package is visible outside the module it belongs
 to, as specified in the section called “Imports”.

	restricted specifies that a
 declaration is only referenceable, as defined by
 the section called “References and block structure”, in code
 belonging to any one of a specified list of modules.

	abstract specifies that a class
 cannot be instantiated, or that a constructor is a
 partial constructor, as specified in
 the section called “Abstract, final, sealed, formal, and default classes”.

	formal specifies that a member
 does not specify an implementation and must therefore be
 refined by every concrete subclass.

	default specifies that a method,
 attribute, or member class may be refined by subtypes.

	actual indicates that a method,
 attribute, or member type refines a method, attribute,
 or member type defined by a supertype.

	variable specifies that a value
 may be assigned multiple times, as specified in
 the section called “References”.

	late disables definite
 initialization checking for a reference, allowing a toplevel
 reference to omit initialization in its declaration, or a
 reference which is an attribute of a class to be left
 unassigned by the initializer of the class, and allows the
 value to be assigned by any other code, as specified by
 the section called “References”.

	native specifies that a program
 element implementation is specific to a certain platform,
 and should be ignored by the compiler backend when compiling
 for any other platform, or that it is actually implemented
 in a different language, and that the program element should
 be completely ignored by the Ceylon compiler backend, or that
 a module or module import statement, as
 defined in the section called “Module descriptors”, is specific
 to a certain platform.

	deprecated indicates that a value,
 function or type is deprecated. It accepts an optional
 String argument. The compiler produces a
 warning when compiling code that depends upon a deprecated
 program element.

	final specifies that a class may not
 be extended, and may not declare default
 members, as specified in
 the section called “Abstract, final, sealed, formal, and default classes”.

	sealed specifies that a class may not
 be extended or instantiated outside the module in which it is
 defined, as specified in the section called “Abstract, final, sealed, formal, and default classes”,
 that an interface may not be satisfied by a class or interface
 outside the module in which it is defined, as specified in
 the section called “Sealed interfaces”, or that a constructor may
 not be invoked outside the module in which it is defined,
 as specified in the section called “Constructors”.

	annotation specifies that a class is
 an annotation type, or that a toplevel function is an annotation
 constructor, as specified in
 the section called “Annotation definition”.

	serializable specifies that a class is
 serializable.

	service specifies that a class implements
 a given service type.

	optional specifies that a module
 dependency is optional at runtime, as defined in
 the section called “Module descriptors”.

	suppressWarnings hides compilation
 warnings occurring at the annotated program element.

Note: annotation constraints ensure that these annotations
 do not occur at program elements to which they do not apply.

The following annotation is a hint to the compiler that lets the
 compiler optimize compiled bytecode for non-64 bit architectures:
	small specifies that a value of type
 Integer or Float contains
 32-bit values, or that a value of type Character
 contains 16-bit values.

By default, Integer and Float
 are assumed to represent 64-bit values, as specified in
 the section called “Numeric operations”, and Character
 is assumed to represent 32-bit Unicode code points.

Documentation

The following annotations are instructions to the documentation
 compiler:
	doc specifies the description of a
 program element, in Markdown format text.

	by specifies the authors of a program
 element.

	license specifies the URL of the
 license under which a module or package is distributed.

	see specifies a related member or
 type.

	throws specifies a thrown exception
 type.

	since specifies the version of its
 module in which a program element was introduced.

	aliased specifies aliases that tools
 use to offer suggestions.

	tagged specifies classifying named
 tags.

The String arguments to the deprecated,
 doc, throws and by
 annotations are parsed by the documentation compiler as Markdown-format
 content.
These annotations are all defined in the package
 ceylon.language.

Serialization

TODO: Define how serialization works.

Chapter 8. Execution

A Ceylon program executes in a virtual machine environment, either:
	a Java Virtual Machine (JVM), or

	a JavaScript virtual machine.

In future, other virtual machine architectures may be supported.
Despite the obvious differences between the respective languages that these
 virtual machines were designed for, they share very much in common in terms of
 runtime semantics, including common notions such as object identity, primitive
 value types, exceptions, garbage collection, dynamic dispatch, and pass by
 reference.
Ceylon abstracts away many of the differences between these platforms, and
 reuses what is common between them. Inevitably there are some differences that
 can't reasonably be hidden from the Ceylon program, and the programmer must take
 these differences into consideration.
In Ceylon, every value is a reference to an instance of a class, except
 within a dynamic block, where a value with no type may be
 a reference to an object which is not an instance of a class.
Note: the semantics of objects without classes is platform-dependent
 and outside the scope of this specification.

Object instances, identity, and reference passing

An object is a unique identifier, together with a
 reference to a class, its type arguments, and a persistent value for each
 reference declared by the class (including inherited references). The object
 is said to be an instance of the class.
A value is a reference to an object (a copy of its
 unique identifier). At a particular point in the execution of the program,
 every reference of every object that exists, and every initialized reference
 of every function, getter, setter, or initializer that is currently executing
 has a value. Furthermore, every time an expression is executed, it produces a
 value.
Two values are said to be identical if they are
 references to the same object—if they hold the same unique identifier.
 The program may determine if two values of type Identifiable
 are identical using the === operator defined in
 the section called “Operator definition”. It may not directly obtain the unique
 identifier (which is a purely abstract construct). The program has no way of
 determining the identity of a value which is not of type
 Identifiable.
Given a value, the program may determine if the referenced object is
 assignable to a certain type using the is
 operator. The object is assignable to the given type if the applied type formed
 by its class and type arguments is a subtype of the given type according to the
 type system defined in Chapter 3, Type system. (Therefore, the Ceylon
 runtime must be capable of reasoning about subtyping.)
Invocation of a function or instantiation of a class results in execution
 of the function body or class initializer with parameter values that are copies
 of the value produced by executing the argument expressions of the invocation,
 and a reference to the receiving instance that is a copy of the value produced
 by executing the receiver expression. The value produced by the invocation
 expression is a copy of the value produced by execution of the
 return directive expression.
Person myself(Person me) { return me; }
Person p = ...;
assert (myself(p)===p); //assertion never fails
Semaphore s = Semaphore();
this.semaphore = s;
assert (semaphore===s); //assertion never fails
A new object is produced by execution of a class instantiation expression.
 The Ceylon compiler guarantees that if execution of a class initializer terminates
 with no uncaught exception, then every reference of the object has been initialized
 with a well-defined persistent value. The value of a reference is initialized for
 the first time by execution of a specifier or assignment expression. Every class
 instantiation expression results in an object with a new unique identifier shared
 by no other existing object. The object exists from the point at which execution
 of its initializer terminates. Conceptually, the object exists
 until execution of the program terminates.
In practice, the object exists at least until the point at which it is not
 reachable by recursively following references from any function, getter, setter,
 or initializer currently being executed, or from an expression in a statement
 currently being executed. At this point, its persistent values are no longer
 accessible to expressions which subsequently execute and the object may be
 destroyed by the virtual machine. There is no way for the program to determine
 that an object has been destroyed by the virtual machine (Ceylon does not support
 finalizers).
Value type optimizations

As a special exception to the rules defined above, the compiler is permitted
 to emit bytecode or compiled JavaScript that produces a new instance of certain
 types in the module ceylon.language without execution of the
 initializer of the class, whenever any expression is evaluated. These types are:
 Integer, Float, Character,
 Range, Entry, String,
 Array, and Tuple. Furthermore, it is permitted
 to use such a newly-produced instance as the value of the expression, as long as the
 newly-produced instance is equal to the value expected according to the rules above,
 as determined using the == operator.
Therefore, the types listed above directly extend Object
 instead of Basic, and are not Identifiable.
Note: this does no justice at all to our compiler. Actually the
 compiler infrastructure already supports value type optimization for user-defined
 types, though we have not yet exposed this functionality as part of the language.

Type argument reification

Type arguments, as defined in the section called “Generic type arguments”, are
 reified in Ceylon. An instance of a generic type holds a
 reference to each of its type arguments. Therefore, the following are possible in
 Ceylon:
	testing the runtime value of a type argument of an instance, for
 example, objectList is List<Person> or
 case (is List<Person>),

	filtering exceptions based on type arguments, for example,
 catch (NotFoundException<Person> pnfe), and

	testing the runtime value of an instance against a type parameter,
 for example x is Key, or against a type with a type
 parameter as an argument, for example,
 objectList is List<Element>.

	obtaining a Type object representing a type with
 type arguments, for example, `List<Person>`,

	obtaining a Type object representing the runtime
 value of a type parameter, for example, `Element`, or of
 a type with a type parameter as an argument, for example,
 `List<Element>`, and

	obtaining a Type object representing the
 runtime value of a type argument of an instance using reflection, for
 example, type(objectList).typeArguments.first.

At runtime, all types are concrete types formed by:
	recursively replacing all type aliases, class aliases, and interface
 aliases with their definitions, which is always possible according to
 the section called “Type alias elimination”, and

	recursively replacing all type parameters with their type arguments

in any type that appears in an expression or condition.
Therefore, every type parameter refers, at runtime, to a concrete type that
 involves no type aliases or type parameters. In particular, the type arguments
 held by an instance of a generic class are concrete types.
This program prints String[].
class Generic<out T>(T t) { string=>`T`.string; }
Generic<{S*}> gen<S>(S* ss) => Generic(ss);
void run() {
 print(gen("hello", "world"));
}
The runtime is generally permitted, as an optimization, to return a more
 precise type in place of a less precise type when a type parameter is evaluated.
 This program may print String instead of Object,
 even though Object is the type argument inferred at compile time.
class Generic<out T>(T t) { string=>`T`.string; }
Generic<Object> gen(Object o) => Generic(o);
void run() {
 print(gen("hello"));
}

Sequential execution and closure

Ceylon programs are organized into bodies, as defined in
 the section called “Block structure and references”, containing statements which are executed
 sequentially and have access to declarations which occur in the surrounding
 lexical context and to persistent values held by references, as defined in
 the section called “References”, declared in the surrounding lexical context.
Note: for the purposes of this section, an interface body is,
 strictly speaking, a trivial case of a body which contains no statements or
 persistent values, but we're primarily concerned with blocks and class bodies.

The statements and non-lazy specifiers that directly occur in a body are
 executed sequentially in the lexical order in which they occcur. Execution of a
 body begins at the first statement or non-lazy specifier. Execution of a block
 terminates when the last statement or non-lazy specifier of the body finishes
 executing, or when a control directive that terminates the block is executed,
 or when an exception is thrown by an evaluation, assignment, invocation, or
 instantiation.
Frames

When execution of a body begins, a frame is created.
 For each reference whose declaration directly occurs in the body, the frame
 has a value, which may or may not be initialized. The value may be initialized
 or assigned during execution of the body.
We can visualize a frame as a list of reference declarations with optional
 values. For example, a frame with an initialized reference named
 language and an uninitialized reference named
 count would be written like this:
{ String language = "ceylon"; Integer count; }
While a body is executing, all values held in the frame are considered
 accessible. An evaluation, assignment, invocation, or instantiation may result
 in a pause in execution of the body while the called getter, setter, function,
 or class is executed or instantiated. However, the frame associated with the
 calling body is retained and values held in the frame are still considered
 accessible. When execution of the body resumes, the frame is restored.
When execution of a body terminates, the frame may or may not become
 inaccessible. In the case of a class body, if the initializer terminates with
 no thrown exception, the frame and its values become a new instance of the
 class, are associated with the newly created unique identifier, and remain
 accessible while this object is itself accessible. In the case of any other
 kind of body, or in the case that an initializer throws an exception, the
 frame and its values may remain accessible if:
	a reference to a function or class declared within the body is
 accessible,

	an instance of a class declared within the body is accessible,
 or

	an instance of a comprehension declared within the body is
 accessible.

Otherwise, the frame becomes inaccessible and may be destroyed.
The principle of closure states that a nested body
 always has access to a frame for every containing body. The set of
 current instances of containing classes and
 current frames of containing blocks forms the closure of
 a nested declaration.

Current instances and current frames

A frame may be the current frame for a body. When the
 body is executing, the created frame is the current frame. When execution of the
 body terminates, the created frame is no longer the current frame. Invocation or
 evaluation of a member of a class or interface, invocation of a callable reference
 or anonymous function, or evaluation of the values produced by a comprehension may
 result in the frame being restored as the current frame.
A class instance, callable reference, anonymous function reference, or
 comprehension instance packages a reference to a frame for each body containing
 the program element, as specified below. When a member of the class instance is
 invoked or evaluated, when the callable reference or anonymous function is
 invoked, or when the comprehension instance produces a value, these frames are
 restored as the current frames of the associated bodies. When the invocation or
 evaluation terminates, or when the comprehension value has been produced, these
 frames are no longer current frames.
The value associated with a value reference in the current frame of the
 body to which the value reference belongs is called the current
 value of the value reference.
If a frame is the current frame for a class or interface body, we call it
 the current instance of the class or interface.
TODO: in the following two sections, account for callable references,
 anonymous function references, and comprehension instances.

Current instance of a class or interface

If a statement is occurs directly or indirectly inside a class or interface
 body, then there is always a current instance of the class or interface when the
 statement is executed. The current instance is determined as follows:
	For a statement that occurs sequentially, as defined by
 the section called “Block structure and references”, in the body of the class or of a
 constructor of the class, the current instance is the new instance
 being initialized.

	For a statement that occurs sequentially in the body of a member
 of the class or interface, the current instance is the receiving instance
 of the base or member expression that resulted in a reference to the
 member.

	For a statement that occurs sequentially in the body of a nested
 class or interface that occurs in the body of the class or interface,
 the current instance is the same object that was the current instance
 when the initializer of the current instance of the nested class or
 interface was executed.

	Otherwise, for any other statement that occurs sequentially in the
 body of a declaration that occurs in the body of the class or interface,
 the current instance is the same object that was the current instance when
 the base member expression that resulted in a reference to the declaration
 was executed.

Here, innerObject is the current instance of
 Inner when member() is executed, and
 outerObject is the current instance of Outer:
Outer outerObject = Outer();
Inner innerObject = outerObject.Inner();
innerObject.member();

Current frame of a block

If a statement occurs directly or indirectly inside a block, then there
 is always a current frame of the block when the statement is executed. The current
 frame is determined as follows:
	If the statement occurs sequentially, as defined by
 the section called “Block structure and references”, in the block, the current frame is the
 frame associated with the current execution of the block.

	For a statement that occurs sequentially in the body of a nested
 class or interface that occurs in the block, the current frame is the same
 frame that was the current frame when the initializer of the current
 instance of the nested class or interface was executed.

	Otherwise, for any other statement that occurs sequentially inside
 the body of a declaration that occurs in the block, and the current frame
 is the frame that was the current frame when the base member expression
 that resulted in a reference to the declaration was executed.

In each of the following code fragments, result refers
 to the value "hello":
String()() outerMethod(String s) {
 String() middleMethod() {
 String innerMethod() => s;
 return innerMethod;
 }
 return middleMethod;
}

String middleMethod()() => outerMethod("hello");
String innerMethod() => middleMethod();
String result = innerMethod();
Object outerMethod(String s) {
 object middleObject {
 shared actual String string => s;
 }
 return middleObject;
}

Object middleObject = outerMethod("hello");
String result = middleObject.string;

Initialization

When an instance is instantiated, its initializer is executed, and the
 initializer for every class it inherits is executed. If a class has
 constructors, one of its constructors is also executed. For a class
 C:
	First, the initializer of Object defined in
 ceylon.language is executed. (This initializer is
 empty and does no work.)

	For each superclass X of C,
 there is exactly one other superclass Y of
 C that directly extends X. When
 execution of the initializer of X terminates without
 a thrown exception, execution of the initializer of Y
 begins. When sequential execution of the initializer reaches the
 declaration of the invoked or delegated constructor of Y,
 if any, the constructor itself is executed. When execution of the
 constructor terminates without a thrown exception, execution of the
 initializer resumes at the next statement after the constructor
 declaration.

	Finally, when execution of the initializer of C,
 terminates without a thrown exception, the new instance of
 C is fully-initialized and made accessible to the
 calling code.

If any initializer or constructor in the class hierarchy terminates with
 a thrown exception, initialization terminates and the incompletely-initialized
 instance never becomes accessible.
Each initializer produces a frame containing initialized values for each
 reference declared by the corresponding class. These frames are aggregated together
 to form the new instance of the class C.
Note: since interfaces don't have initializers, the issue of
 "linearization" of supertypes simply never arises in Ceylon. There is a natural,
 well-defined initialization ordering.

Class instance optimization

As an exception to the above, the compiler is permitted to destroy a
 persistent value associated with a class instance when the class initializer
 terminates, potentially rendering inaccessible the instance identified by the
 value, if it can determine that the persistent value will never be subsequently
 accessed by the program.
This optimization is the only source of a distinction between a
 "field" of a class and a "local variable" of its initializer. There is no way
 for a program to observe this distinction.

Execution of expression and specification statements

When an expression statement is executed, the expression is evaluated.
When a non-lazy specification statement is executed, the specified
 expression is evaluated, and the resulting value assigned to the specified
 reference within the current frame or current instance associated with the
 body to which the specified reference belongs.
When a lazy specification statement is executed, the specified
 expression is associated with the specified reference within the current
 frame or current instance associated with the body to which the specified
 reference belongs. Subsequent evaluation or invocation of the reference
 for this current frame or current instance may result in evaluation of the
 specified expression, in which case the expression is evaluated within this
 current frame or current instance.

Execution of control directives

Execution of a control directive, as specified in
 the section called “Control directives”, terminates execution of the body in which it
 occurs, and possibly of other containing bodies.
	A return directive that occurs sequentially in
 the body of a function, getter, setter, or class initializer terminates
 execution of the body of the function, getter, setter, or class initializer
 and of all intervening bodies. Optionally, it determines the return value of
 the function or getter.

	A break directive terminates execution of the
 body of the most nested containing loop in which it occurs sequentially,
 and of all intervening bodies. Additionally, it terminates execution of
 the loop.

	A continue directive terminates execution of the
 body of the most nested containing loop in which it occurs sequentially,
 and of all intervening bodies. It does not terminate execution of the
 loop.

	A throw directive that occurs sequentially in
 the body of a function, getter, setter, or class initializer terminates
 execution of the body of the function, getter, setter, or class
 initializer and of all intervening bodies, and, furthermore, the exception
 propagates to the caller, as defined below, unless there is an intervening
 try with a catch clause matching the
 thrown exception, in which case it terminates execution of the body of the
 try statement and all intervening bodies, and execution
 continues from the body of the catch clause.

Exception propagation

If execution of an evaluation, assignment, invocation, or instantiation
 terminates with an exception thrown, the exception propagates to the calling
 code, and terminates execution of the body of the function, getter, setter, or
 class initializer in which the expression involving the evaluation, assignment,
 invocation, or instantiation sequentially occurs, and of all intervening bodies,
 and, furthermore, the exception propagates to the caller unless there is an
 intervening try with a catch clause
 matching the thrown exception, in which case it terminates execution of the body
 of the try statement and all intervening bodies, and execution
 continues from the body of the catch clause.

Initialization of toplevel references

A toplevel reference has no associated frame. Instead, the lifecycle of
 its persistent value is associated with the loading and unloading of a module
 by the module runtime. The first time a toplevel reference is accessed
 following the loading of its containing module, its initializer expression is
 evaluated, and the resulting value is associated with the reference. This
 association survives until the toplevel reference is reassigned, or until the
 module is unloaded by the module runtime.
Initialization of a toplevel reference may result in recursive
 initialization of other toplevel references. Therefore, it is possible that
 a cycle could occur where evaluation of a toplevel reference occurs while
 evaluating its initializer expression. When this occurs, an
 InitializationError is thrown.

Initialization of late references

A reference annotated late may be uninitialized in a
 given frame. The rules of the language do not guarantee that an uninitialized
 late reference is never evaluated at runtime. If a
 late reference which is uninitialized in the current frame
 or current instance is evaluated, an InitializationError
 is thrown.
Likewise, if a non-variable late
 reference which is already initialized in the current frame or current instance
 is assigned, an InitializationError is thrown.

Execution of control structures and assertions

Control structures, as specified in the section called “Control structures and assertions”, are
 used to organize conditional and repetitive code within a body. Assertions are
 essentially a sophisticated sort of control directive, but for convenience are
 categorized together with control structures.
Evaluation of condition lists

Execution of an if, while, or
 assert requires evaluation of a condition list, as defined
 in the section called “Conditions”.
To determine if a condition list is satisfied, its constituent conditions
 are evaluated in the lexical order in which they occur in the condition list.
 If any condition is not satisfied, none of the subsequent conditions in the list
 are evaluated.
	A boolean condition is satisfied if its expression evaluates to
 true when the condition is evaluated.

For any other kind of condition, the condition is satisfied if its value
 reference or expression evaluates to an instance of the required type when the
 condition is evaluated:
	for an assignability condition, the condition is satisfied if the
 expression evaluates to an instance of the specified type when the control
 structure is executed,

	for an existence condition, the condition is satisfied unless the
 expression evaluates to null when the control structure
 is executed, or

	for a nonemptiness expression, the condition is satisfied unless the
 expression evaluates to an instance of []|Null when the
 control structure is executed.

A condition list is satisfied if and only if all of its constituent conditions
 are satisfied.

Validation of assertions

When an assertion, as specified in the section called “Assertions”, is
 executed, its condition list is evaluated. If the condition list is not satisfied,
 an exception of type AssertionError in
 ceylon.language is thrown.
The information carried by the AssertionError includes:
	the text of the Ceylon code of the condition that failed,

	the failure message, if any.

Execution of conditionals

The if/else and switch/case/else
 constructs control conditional execution.
When the if/else construct, specified in
 the section called “if/else”, is executed, its condition list is evaluated. If the
 condition list is satisfied, the if block is executed.
 Otherwise, the else block, if any, is executed, or, if the
 construct has an else if, the child if
 construct is executed.
When a switch/case/else construct, specified in
 the section called “switch/case/else”, is executed, its switch
 expression is evaluated to produce a value. The value is guaranteed to
 match at most one case of the
 switch. If it matches a certain case, then that
 case block is executed. Otherwise, switch
 is guaranteed to have an else, and so the
 else block is executed.
The value produced by the switch expression matches
 a case if either:
	the case is a list of literal values and value references the
 value is identical to one of the value references in the list or
 equal to one of the literal values in the list, or if

	the case is an assignability condition of form
 case (is V) and the value is an instance of
 V.

Execution of loops

The for/else and while loops control
 repeated execution.
When a while construct, specified in the section called “while”,
 is executed, the loop condition list is evaluated repeatedly until the first time
 the condition list is not satisfied, or until a break,
 return, or throw directive that terminates the
 loop is executed. Each time the condition is satisfied, the while
 block is executed.
When a for/else construct, specified in the section called “for/else”,
 is executed:
	the iterated expression is evaluated to produce an an instance of
 Iterable,

	an Iterator is obtained by calling
 iterator() on the iterable object, and then

	the for block is executed once for each value
 of produced by repeatedly invoking the next() method
 of the iterator, until the iterator produces the value finished,
 or until a break, return, or
 throw directive that terminates the loop is executed.

Note that:
	if the iterated expression is also of type X[],
 the compiler is permitted to optimize away the use of Iterator,
 instead using indexed element access.

	if the iterated expression is a range constructor expression, the
 compiler is permitted to optimize away creation of the Range,
 and generate the indices using the successor operation.

We say that the loop exits early if it ends via execution
 of a break, return, or throw
 directive. Otherwise, we say that the loop completes normally.
If the loop completes normally, the else block is executed.
 Otherwise, if the loop exits early, the else block is not executed.

Exception handling

When a try/catch/finally construct, specified in
 the section called “try/catch/finally”, is executed:
	the resource expressions, if any, are evaluated in the order
 they occur, and then obtain() is called on each
 resulting resource instance of type Obtainable,
 in the same order, then

	the try block is executed, then

	destroy() is called on each resource instance
 of type Destroyable, and release()
 is called on each resource instance of type Obtainable,
 if any, in the reverse order that the resource expressions occur,
 passing the exception that propagated out of the try
 block, if any, then

	if an exception did propagate out of the try
 block, the first catch block with a variable
 to which the exception is assignable, if any, is executed, and
 then

	the finally block, if any, is executed,
 even in the case where an exception propagates out of the whole
 construct.

TODO: Specify what happens if close()
 throws an exception. (Same semantics as Java with "suppressed" exceptions.)

Dynamic type checking

Inside a dynamic block, a situation might occur that
 requires dynamic type checking, as specified in the section called “Dynamic blocks”.
 It is possible that:
	the value to which an expression with no type evaluates at
 execution time might not be an instance of the type required where
 the expression occurs,

	in particular, the value to which a switch
 expression with no type evaluates at execution time might be an
 instance of a type not covered by the cases of
 a switch with no else, or

	a qualified or unqualified reference which does not refer to
 a statically typed declaration might not resolve to any declaration
 at all.

Whenever such a condition is encountered at runtime, an
 AssertionError is immediately thrown.
Note: in Ceylon 1.0, dynamic type checking is only supported
 on JavaScript virtual machines.

Evaluation, invocation, and assignment

Evaluation of an expression may result in:
	invocation of a function or instantiation of a class,

	evaluation of a value,

	instantiation of an instance of Callable
 that packages a callable reference, or

	assignment to a variable value.

Dynamic dispatch

Dynamic dispatch is the process of determing
 at runtime a member declaration based upon the runtime type of an object,
 which, as a result of subtype polymorphism, may be different to its static
 type known at compile time.
Any concrete class is guaranteed to have exactly one declaration of
 a member, either declared or inherited by the class, which refines all other
 declarations of the member declared or inherited by the class. At runtime,
 this member is selected.
There is one exception to this rule: member expressions where the
 receiver expression is of form super or
 (super of Type), as defined in the section called “super”,
 are dispatched based on the static type of the receiver expression:
	Any invocation of a member of super is
 processed by the member defined or inherited by the supertype,
 bypassing any member declaration that refines this member
 declaration.

	Any invocation of a member of an expression of form
 (super of Type) is processed by the member
 defined or inherited by Type, bypassing any
 member declaration that refines this member declaration.

Evaluation

Evaluation of a value reference, as defined in the section called “Value references”,
 produces its current value. Evaluation of a callable reference, as defined in
 the section called “Callable references”, that does not occur as the primary of a
 direct invocation results in a new instance of Callable that
 packages the callable reference.
person.name
'/'.equals
When a value reference expression is executed:
	first, the receiver expression, if any, is evaluated to obtain a
 receiving instance for the evaluation, then

	the actual declaration to be invoked is determined by considering
 the runtime type of the receiving instance, if any, and then

	if the declaration is a reference, its persistent value is retrieved
 from the receiving instance, or

	otherwise, execution of the calling body pauses while the body
 of its getter is executed by the receiving instance, then,

	finally, when execution of the getter ends, execution of the
 calling body resumes.

The resulting value is the persistent value retrieved, or the return value
 of the getter, as specified by the return directive.
When a callable reference expression that does not occur as the primary of
 a direct invocation expression is executed:
	first, the receiver expression, if any, is evaluated to obtain a
 receiving instance for the evaluation, then

	the receiving instance, a reference to the declaration to be
 invoked, or a reference to the current frame or instance of every body
 that contains the referenced declaration are packaged together into an
 instance of Callable.

The resulting value is the instance of Callable. The
 concrete class of this instance is not specified here.

Assignment

Given a value reference, as defined in the section called “Value references”,
 to a variable, the assignment operator = assigns it a new
 value.
person.name = "Gavin"
When an assignment expression is executed:
	first, the receiver expression of the value reference expression
 is executed to obtain the receiving instance, then

	the actual declaration to be assigned is determined by considering
 the runtime type of the receiving instance, and then

	if the member is a reference, its persistent value is updated in
 the receiving instance, or

	otherwise, execution of the calling body pauses while the body
 of its setter is executed by the receiving instance with the assigned
 value, then,

	finally, when execution of the setter ends, execution of the calling
 body resumes.

Invocation

Evaluation of an invocation expression, as defined in
 the section called “Invocation expressions”, results in invocation
 of a function or callable constructor, or instantiation of a
 class. Every invocation has a callable expression:
	in a direct invocation, the callable expression is a callable
 reference, and

	in an indirect invocation, the callable expression is an instance of
 Callable that packages an underlying callable reference.

In either case, the callable expression determines the instance and member
 to be invoked.
print("Hello world!")
Entry(person.name, person)
When an invocation expression is executed:
	first, the callable expression is evaluated to obtain the receiving
 instance, then

	each listed argument or spread argument is evaluated in turn in the
 calling body, and

	if the argument list has a comprehension, a comprehension instance,
 as defined in the section called “Evaluation of comprehensions”, is obtained,
 and then

	the actual declaration to be invoked is determined by considering the
 runtime type of the receiving instance, if any, and then

	execution of the calling body pauses while the body of the function
 or initializer is executed by the receiving instance with the argument values,
 then

	finally, when execution of the function or initializer ends, execution
 of the calling body resumes.

A function invocation evaluates to the return value of the function, as specified
 by the return directive. The argument values are passed to the
 parameters of the method, and the body of the method is executed.
A class instantiation evaluates to a new instance of the class. The argument
 values are passed to the initializer parameters of the class, and the initializer
 is executed.

Evaluation of anonymous functions

When an anonymous function expression, as defined in
 the section called “Anonymous functions”, is evaluated, a reference to the function and a
 reference to the current frame or instance of every containing body are packaged into an
 instance of Callable. The instance of Callable is
 the resulting value of the expression. The concrete class of this instance is not
 specified here.

Evaluation of enumerations

Evaluation of an enumeration expression, as defined in
 the section called “Iterable and tuple enumeration”, results in creation of an iterable stream or
 tuple.
{ "hello", "world" }
[new, *elements]
When an iterable enumeration expression is executed, a reference to the
 enumeration expression, together with a reference to the current frame or
 instance of every containing body, together with a comprehension instance,
 as defined in the section called “Evaluation of comprehensions”, in the case that the
 enumeration expression has a comprehension, are packaged together into a stream.
 Evaluation of an expression occurring in the enumeration expression occurs in
 the context of the packaged framed associated with the stream. When the stream
 is iterated, it produces, in turn:
	one value for each listed argument, by evaluating the listed
 argument expression, and then

	if the argument list has a spread argument, each value produced
 by the spread argument, or

	if the argument list has a comprehension, each value produced
 by the comprehension instance, or

	if there are no arguments, and no comprehension, the
 stream is empty and produces no values.

When a tuple enumeration expression is executed:
	first, each listed argument or spread argument is evaluated in
 turn in the calling body, and

	if the argument list has a comprehension, a comprehension instance,
 as defined in the section called “Evaluation of comprehensions”, is obtained,
 and then

	the resulting argument values are packaged into an instance of
 Iterable or Sequence, and this
 object is the resulting value of the enumeration expression, unless

	there are no arguments, and no comprehension, in which case
 the resulting value of the enumeration expression is the object
 empty.

In the case of an iterable enumeration, the concrete class of the resulting
 value is not specified here. In the case of a tuple enumeration it is always
 Tuple, Empty, or Sequence.

Evaluation of spread arguments and comprehensions

A spread argument, as defined in the section called “Spread arguments”, produces
 multiple values by iterating the iterable object to which the spread operator
 is applied.
When a spread argument expression type is a subtype of Sequential,
 the behavior does not depend upon where the spread argument occurs:
	If it occurs as an argument, the sequence produced by evaluating
 the expression is passed directly to the parameter.

	If it occurs in an enumeration expression, the sequence produced
 by evaluating the expression is appended directly to the resulting
 iterable object or tuple.

On the other hand, when a spread argument expression type is not a subtype of
 Sequential, the behavior depends upon where the spread argument
 occurs:
	If it occurs as an argument to a variadic parameter in a positional
 argument list, the values produced by a spread argument are evaluated
 immediately and packaged into an instance of Sequence
 and passed to the variadic parameter, unless there are no values, in
 which case the object empty is passed to the variadic
 parameter.

	If it occurs as an argument to a parameter of type
 Iterable at the end of a named argument list, the
 iterable object produced by evaluating the expression is passed directly
 to the parameter.

	If it occurs in a tuple enumeration, the values produced by a
 spread argument are evaluated immediately and packaged into an instance
 of Sequence and appended to the resulting tuple.

	If it occurs in an iterable enumeration, the iterable object
 produced by evaluating the expression is chained directly to the
 resulting iterable object.

Likewise, a comprehension, as defined in the section called “Comprehensions”,
 produces multiple values, as specified by the section called “Evaluation of comprehensions”.
 The behavior depends upon where the comprehension occurs:
	If it occurs as an argument to a variadic parameter in a positional
 argument list, the values produced by the comprehension instance are
 evaluated immediately, packaged into an instance of Sequence,
 and passed to the variadic parameter, unless there are no values, in
 which case the object empty is passed to the variadic
 parameter.

	If it occurs as an argument to a parameter of type
 Iterable at the end of a named argument list, the
 comprehension instance is packaged into an iterable object that produces
 the values of the comprehension on demand, and this iterable object is
 passed directly to the parameter. The concrete class of this object is
 not specified here.

	If it occurs in a tuple enumeration, the values produced by the
 comprehension instance are evaluated immediately, packaged into an instance
 of Sequence, and appended to the resulting tuple.

	If it occurs in an iterable enumeration, the comprehension instance
 is packaged into an iterable object that produces the values of the
 comprehension on demand, and this iterable object is chained directly to
 the resulting iterable object. The concrete class of this object is not
 specified here.

Operator expressions

Most operator expression are defined in terms of function invocation, value
 evaluation, or a combination of invocations and evaluations, as specified in
 the section called “Operators”. The semantics of evaluation of an operator expression
 therefore follows from the above definitions of evaluation and invocation and from
 its definition in terms of evaluation and invocation.
However, this specification allows the compiler to take advantage of the
 optimized support for primitive value types provided by the virtual machine
 environment.
Operator expression optimization

As a special exception to the rules, the compiler is permitted to optimize
 certain operations upon certain types in the module ceylon.language.
 These types are: Integer, Float,
 Character, Range, Entry,
 String, Array, and Tuple.
Thus, the tables in the previous chapter define semantics only. The compiler
 may emit bytecode or compiled JavaScript that produces the same value at runtime as
 the pseudo-code that defines the operator, without actually executing any invocation,
 for the following operators:
	all arithmetic operators,

	the comparison and equality operators ==,
 !=, <=>, <,
 >, <=, >=
 when the argument expression types are built-in numeric types, and

	the Range and Entry construction
 operators .., :, and
 ->.

In all operator expressions, the arguments of the operator must be evaluated
 from left to right when the expression is executed. In certain cases, depending upon
 the definition of the operator, evaluation of the leftmost argument expression results
 in a value that causes the final value of the operator expression to be produced
 immediately without evaluation of the remaining argument expressions. Optimizations
 performed by the Ceylon compiler must not alter these behaviours.
Note: this restriction exists to ensure that any effects are not
 changed by the optimizations.

Numeric operations

The arithmetic operations defined in the section called “Arithmetic operators” for
 values of type Integer and Float are
 defined in terms of methods of the interface Numeric.
 However, these methods themselves make use of the native operations of the
 underlying virtual machine. Likewise, values of type Integer
 and Float are actually represented in terms of a format
 native to the virtual machine.
It follows that the precise behavior of numeric operations depends
 upon the virtual machine upon which the program executes. However, certain
 behaviours are common to supported virtual machines:
	Values of type Float are represented
 according to the IEEE 754 specification, IEEE Standard
 for Binary Floating-Point Arithmetic, and floating point
 numeric operations conform to this specification. Where possible,
 a double-precision 64-bit representation is used. It is possible on
 both Java and JavaScript virtual machines.

	Where possible, values of type Integer are
 represented in two's complement form using a fixed bit length. Where
 possible, a 64-bit representation is used. Overflow and underflow
 wrap silently. This is the case for the Java Virtual Machine.

	Otherwise, values of type Integer are
 represented according to the IEEE 754 specification. This is the
 case for JavaScript virtual machines.

Platform-dependent behavior of numeric operations is defined in the
 Java Language Specification, and the ECMAScript Language Specification.
It might be argued that having platform-dependent behavior
 for numeric operations opens up the same portability concerns that affected
 languages like C in the past. However, the cross-platform virtual machines
 supported by Ceylon already provide a layer of indirection that substantially
 eases portability concerns. Of course, numeric code is not guaranteed to be
 completely portable between the Java and JavaScript virtual machines, but
 it's difficult to imagine how such a level of portability could reasonably
 be achieved.

Evaluation of comprehensions

When a comprehension, as specified in the section called “Comprehensions”,
 is evaluated, a reference to the comprehension, together with a reference to
 the current frame or instance of every containing body, are packaged together
 into a comprehension instance. A comprehension instance
 is not considered a value in the sense of the section called “Object instances, identity, and reference passing”.
 Instead, it is a stream of values, each produced by evaluating the expression
 clause of the comprehension.
A comprehension consists of a series of clauses. Each clause of a
 comprehension, except for the expression clause that terminates the list of
 clauses, produces a stream of frames. A frame is a set
 of values for iteration variables and condition variables declared by the
 clause and its parent clauses.
Note: each child clause can be viewed as a body nested inside
 the parent clause. The lifecycle of comprehension frames reflects this model.

Evaluation of an expression occurring in a comprehension clause occurs
 in the context of the packaged frames associated with the comprehension
 instance together with a comprehension frame associated with the clause.
for clause

The expression which produces the source stream for a child
 for clause may refer to an iteration variable of a
 parent for clause. In this case the child clause is
 considered correlated. Otherwise it is considered
 uncorrelated.
In either case, the child clause produces a stream of frames.
 For each frame produced by the parent clause, and for each value
 produced by the source stream of the child clause, the child clause
 produces a frame consisting of the parent clause frame extended
 by the iteration variable value defined by the child clause.
This comprehension has a correlated for clause.
 For each character c in each string w
 in words, the child for clause
 produces the frame { String word=w; Character char=c; }.
for (word in words) for (char in word) char
This comprehension has an uncorrelated for clause.
 For each string n in nouns, and each
 string a in adjectives, the child
 for clause produces the frame
 { String noun=n; String adj=a; }.
for (noun in nouns) for (adj in adjectives) adj + " " + noun

if clause

A child if clause filters its parent clause frames.
 For every frame produced by the parent clause which satisfies the condition
 list of the child clause, the child clause produces that frame, extended by
 any condition variable defined by the child clause.
This comprehension has an if clause. For
 each object o in objects that
 is a nonempty String, the if clause
 produces the frame { Object obj=o; String str=o; }.
for (obj in objects) if (is String str=obj, !str.empty) str

Expression clause

As specified in the section called “Comprehensions”, every comprehension ends
 in an expression clause. An expression clause produces a single value for each
 frame produced by its parent clause, by evaluating the expression in the frame.
 These resulting values are the values returned by the whole comprehension.

Concurrency

Neither this specification nor the module ceylon.language
 provide any facility to initiate or control concurrent execution of a program
 written in Ceylon. However, a Ceylon program executing on the Java Virtual Machine
 may interact with Java libraries (and other Ceyon modules) that make use of
 concurrency.
In this scenario, the execution of a Ceylon program is governed by the rules
 laid out by the Java programming language's execution model (Chapter 17 of the Java
 Language Specification). Ceylon references belonging to a class or interface are
 considered fields in the sense of the JLS. Any such refence
 not explicitly declared variable is considered a
 final field. Evaluation of a reference is considered a
 use operation, and assignment to or specification of a variable
 reference is considered an assign operation, again in terms of
 the JLS.

Chapter 9. Module system

The Ceylon module architecture enables a toolset which relieves
 developers of many mundane tasks. The module system specifies:
	the format of packaged deployable module archives (for
 the Java platform), module scripts (for the JavaScript platform),
 and source archives,

	the layout of a module repository

	the format of the package descriptor files which contain
 information about the packages contained in a module, including
 whether a package is visible to other modules, and

	the format of the module descriptor file which contains
 information about a module, along with a list of its
 versioned dependencies.

Thus, developers are never exposed to individual .class
 files, and are not required to manually manage module archives using the
 operating system file manager. Instead, the toolset helps automate the
 management of modules within module repositories.
Circular dependencies between modules are not supported. The Ceylon
 compiler detects such dependencies and produces an error.
Note: as an extension, the Ceylon toolset supports interoperation
 with external module repository systems including Maven and NPM. However, this
 functionality is outside the scope of this specification.

The module runtime and module isolation

At any time, there may be multiple versions of a certain module
 available in the virtual machine. Modules execute under the control of
 the module runtime. The module runtime:
	obtains modules from module repositories,

	reads module metadata and recursively loads
 dependencies, and

	isolates modules that belong to different
 assemblies.

Execution of a module begins with a specified toplevel method or
 class, or with an entry point specified in the module descriptor, and
 imported modules are loaded lazily as classes they contain are needed.
 The name and version id of the imported module containing the needed
 class are determined from the imported package name specified by the
 compilation unit and the imported module version specified by the
 module descriptor.
The mechanism behind this is platform-dependent.
Module isolation for the Java platform

In the JVM environment, each version of each module is loaded
 using a different class loader. Classes inside a module have access
 to other classes in the same module and to classes belonging to
 modules that are explicitly imported in the module descriptor.
 Classes in other modules are not accessible.
Ceylon supports a simplified class loader architecture:
	The bootstrap class loader owns
 classes required to bootstrap the module runtime. It is the
 direct parent of all module class loaders, and its classes
 are visible to all module class loaders.

	A module class loader owns classes
 belonging to a given version of a certain module. Its classes
 are visible only to classes belonging to the module class
 loader of a module which declares an explicit dependency on
 the given version of the first module.

The Ceylon module runtime for the JVM is implemented
 using JBoss Modules. It is included in the Ceylon SDK.

Module isolation for the JavaScript platform

In the JavaScript environment, modules are loaded using the
 require() function defined by CommonJS Modules.
There are various implementations of the CommonJS-style
 require() function, and Ceylon module scripts should
 work with any of them.

Assemblies

A future release of the language will add support for
 assemblies, that is, the ability to:

 	package together several interdependent versioned modules
 into a single archive for deployment as a single well-defined
 application or service,

	specify the name and version of the application or
 service, and

	override the versions of imported modules declared in
 modules.ceylon, as defined in
 the section called “Module descriptors”, with assembly-specific
 module versions.

 An assembly archive will probably just be an archived module
 repository with an assembly descriptor.

Source layout

A source directory contains Ceylon source
 code in files with the extension .ceylon and Java
 source code in files with the extension .java.
 The module and package to which a compilation unit belongs is
 determined by the subdirectory in which the source file is found.
The name of the package to which a compilation unit belongs is
 formed by replacing every path directory separator character with a
 period in the relative path from the root source directory to the
 subdirectory containing the source file. In the case of a Java source
 file, the subdirectory must agree with the package specified by the
 Java package declaration.
The name of the module to which a compilation unit belongs is
 determined by searching all containing directories for a module
 descriptor. The name of the module is formed by replacing every path
 directory separator character with a period in the relative path
 from the source directory to the subdirectory containing the module
 descriptor. If no module descriptor is found, the code belongs to
 the default module.
Note: the default module is intended only as a
 convenience for experimental code.

A package or compilation unit may belong to only one module.
 No more than one module descriptor may occur in the containing
 directories of a compilation unit.
Thus, the structure of the source directory containing the
 module org.hello might be the following:
source/
 org/
 hello/
 module.ceylon //the module descriptor
 main/
 hello.ceylon
 default/
 DefaultHello.ceylon
 personalized/
 PersonalizedHello.ceylon
The source code for multiple modules may be contained in a
 single source directory.

Module architecture

Compiled code is automatically packaged into module
 archives and module scripts by the
 Ceylon compiler. A module repository is a
 repository containing module archives, module scripts, and other
 miscellaneous artifacts. A module archive or module script is
 automatically obtained from a module repository when code belonging
 to the module is needed by the compiler or module runtime.
Modules that form part of the Ceylon SDK are found in the
 module repository in the modules directory of
 the Ceylon distribution.
Red Hat maintains a central module repository at
 https://modules.ceylon-lang.org. Read access to
 this site is free of registration and free of charge. Ceylon projects
 may apply for a user account which provides write access to the central
 module repository.
A module belonging to the central module repository must
 satisfy the following regulations:
	the first element of the module name must be a top-level
 internet domain name, and the second element of the module name
 must be a second-level domain of the given top-level domain
 owned by the organization distributing the module, and.

	the module must be made available under a royalty-free
 license.

For example, a module developed by Red Hat might be named
 org.jboss.server.
TODO: should we require that module archives be signed
 using the Java jarsigner tool?

Module names and version identifiers

A module name is a period-separated
 list of initial lowercase identifiers, for example:
ceylon.language
org.hibernate
It is recommended that module names follow the Java package
 naming convention embedding the organization's domain name (in
 this case, hibernate.org). The namespace
 ceylon is reserved for Ceylon SDK modules. The
 namespace java is reserved for modules
 belonging to the Java SDK. The namespace default
 is reserved for the default module.
It is highly recommended, but not required, that every
 user-written module have at least three identifiers in its name.
 Therefore, org.hibernate.orm is strongly
 preferred to org.hibernate.
Modules may not be "nested". That is, the list of identifiers
 forming the name of a module may not be a prefix of the list of
 identifiers forming the name of another module.
A package belongs to a module if the list of identifiers
 forming the name of the module is a prefix of the list of
 identifiers forming the name of the package. For example, the
 packages:
ceylon.language
ceylon.language.assertion
ceylon.language.meta
ceylon.language.meta.declaration
belong to the module ceylon.language. The
 packages:
org.hibernate
org.hibernate.impl
org.hibernate.cache
belong to the module org.hibernate.
TODO: This might not work out all that well in practice,
 unless we introduce some additional convention for "extras" modules,
 for example, modules containing examples. It could be
 org.hibernate vs org.hibernate_example
 or org.hibernate.core vs
 org.hibernate.example.

The name of the default module is default. The
 default module has no version and cannot be published to a remote repository
 nor to the local repository cache under ~/.ceylon/repo.
A module version identifier is a character
 string containing no whitespace,
 for example:
1.0.1
3.0.0.beta
TODO: at some stage we will probably need to add a format
 for specifying version ranges.

Module archive names for the Java platform

A module archive name is constructed from
 the module name and version identifier. A module archive name is of
 the following standard form:
<module>-<version>.car
where <module>
 is the full name of the module, and
 <version> is the module
 version identifier. For example:
ceylon.language-1.0.1.car
org.hibernate-3.0.0.beta.car
The default module has no version, its module archive name is default.car

Module script names for the JavaScript platform

A module script name is likewise constructed
 from the module name and version identifier. A module script name is of
 the following standard form:
<module>-<version>.js
where <module>
 is the full name of the module, and
 <version> is the module
 version identifier. For example:
ceylon.language-1.0.1.js
org.hibernate-3.0.0.beta.js
The default module has no version, its module archive name is default.js

Source archive names

A source archive name is of the following
 standard form:
<module>-<version>.src
For example:
ceylon.language-1.0.1.src
org.hibernate-3.0.0.beta.src
The default module has no version, its source archive name is default.src

Module archives

A Ceylon module archive is a Java jar
 archive which:
	contains a Ceylon module descriptor in the
 module directory,

	contains the compiled .class
 files for all compilation units belonging to the module,
 and

	has a filename which adheres to the standard for
 module archive names.

The module directory of the module archive
 is formed by replacing each period in the fully qualified package name
 with the directory separator character. For example, the module directory
 for the module ceylon.language is:
/ceylon/language
The module directory for the module org.hibernate
 is:
/org/hibernate
The package directory for a package
 belonging to the module archive is formed by replacing each period
 in the fully qualified package name with the directory separator
 character. For example, the package directory for the package
 org.hibernate.impl is:
/org/hibernate/impl
Inside a module archive, a .class file is
 found in the package directory of the package to which it belongs.
Thus, the structure of the module archive for the module
 org.hello might be the following:
org.hello-1.0.0.car
 META-INF/
 MANIFEST.MF
 org/
 hello/
 module.class //the module descriptor
 main/
 package.class //a package descriptor
 hello.class
 default/
 DefaultHello.class
 personalized/
 PersonalizedHello.class
A module archive may not contain multiple modules.

Module scripts

A Ceylon module script is a JavaScript source file which:
	complies with the CommonJS Modules specification,
 and

	has a filename which adheres to the standard for
 module script names.

Source archives

A source archive is a zip
 archive which:
	contains the source code (.ceylon
 and .java files) for all compilation units
 belonging to the module, and

	has a filename which adheres to the standard for
 source archive names.

Inside a source archive, a Ceylon or Java source file is located in
 the package directory of the package to which the
 compilation unit belongs. The package directory for a package belonging
 to the source archive is formed by replacing each period in the fully
 qualified package name with the directory separator character.
Thus, the structure of the source archive for the module
 org.hello might be the following:
org.hello-1.0.0.src
 org/
 hello/
 module.ceylon //the module descriptor
 main/
 package.ceylon //a package descriptor
 hello.ceylon
 default/
 DefaultHello.ceylon
 personalized/
 PersonalizedHello.ceylon
A source archive may not contain the source of multiple modules.

Module repositories

A module repository is a directory structure on the local
 filesystem or a remote HTTP server.
	A local module repository is
 identified by a filesystem path.

	A remote module repository is
 identified by a URL with protocol http:
 or https:.

A publishable module repository is a local
 module repository, or a WebDAV-enabled remote module repository.
For example:
modules
/usr/bin/ceylon/modules
http://jboss.org/ceylon/modules
https://gavin:secret@modules.ceylon-lang.org
A module repository contains module archives, module scripts,
 source archives, and documentation. The address of an artifact
 belonging to the repository adheres to the following standard form:
<repository>/<module-path>/<version>/<artifact>
where <repository>
 is the filesystem path or URL of the repository,
 <artifact> is the name
 of the artifact, <version>
 is the module version, and <module-path>
 is formed by replacing every period with a slash in the module name.
The default module having no version, its access path does not
 contain the version.
<repository>/default/<archive>
For example, the module archive ceylon.language-1.0.1.car,
 module script, ceylon.language-1.0.1.js, and source
 archive ceylon.language-1.0.1.src, belonging to the
 repository included in the Ceylon SDK are obtained from the following
 addresses:
modules/ceylon/language/1.0.1/ceylon.language-1.0.1.car
modules/ceylon/language/1.0.1/ceylon.language-1.0.1.js
modules/ceylon/language/1.0.1/ceylon.language-1.0.1.src
The module archive org.hibernate-3.0.0.beta.car
 and source archive org.hibernate-3.0.0.beta.src
 belonging to the repository http://jboss.org/ceylon/modules
 are obtained from the following addresses:
http://jboss.org/ceylon/modules/org/hibernate/3.0.0.beta/org.hibernate-3.0.0.beta.car
http://jboss.org/ceylon/modules/org/hibernate/3.0.0.beta/org.hibernate-3.0.0.beta.src
The legacy Java jar archive org.h2-1.2.141.jar
 belonging to the repository /usr/bin/ceylon/modules is
 obtained from the following address:
/usr/bin/ceylon/modules/org/h2/1.2.141/org.h2-1.2.141.jar
For each archive, the module repository may contain a SHA-1 checksum
 file. The checksum file is a plain text file containing just the SHA-1 checksum
 of the archive. The address of a checksum file adheres to the following standard
 form:
<repository>/<module-path>/<version>/<archive>.sha1
The compiler or module runtime verifies the checksum after downloading
 the archive from the module repository.
A module repository may contain documentation generated by the Ceylon
 documentation compiler in exploded form. A module's documentation resides in the
 module documentation directory, a directory with address
 adhering to the following standard form:
<repository>/<module-path>/<version>/module-doc/
For example, the home page for the documentation of the module
 org.hibernate is:
http://jboss.org/ceylon/modules/org/hibernate/module-doc/index.html

Package descriptors

A package descriptor is defined in a source file
 named package.ceylon in the package it describes.
PackageDescriptor: Annotations "package" FullPackageName ";"
A package may be annotated shared.
 A shared package is visible outside the containing module,
 that is, in any module which imports the containing module.
The package descriptor is optional for unshared packages.
"The typesafe query API."
license ("http://www.gnu.org/licenses/lgpl.html")
shared package org.hibernate.query;

Module descriptors

A module descriptor is defined in a source file
 named module.ceylon in the root package of the module it
 describes (the package with the same name as the module).
ModuleDescriptor: Annotations "module" ModuleName ModuleSpecifier? Version ModuleBody
ModuleName: FullPackageName
A literal string after the module name specifies the version of the
 module.
Version: StringLiteral
The optional module specifier defines a mapping
 to a foreign module system to which the module will be exported.
ModuleSpecifier: Repository Module (Artifact Classifier?)?
The repository type identifier selects a foreign module repository
 system, for example, maven, or npm,
 in which the module resides. This specification does not define the semantics
 of this identifier.
Repository: LIdentifier ":"
The name of the module in the foreign module repository may be
 specified using the usual syntax for a module name, or as a literal string.

Module: ModuleName | StringLiteral
Note: quoted module names enable interoperation with foreign
 module repository systems whose module identifiers do not comply with the
 format specified for Ceylon module names.

The optional artifact identifier and classifier are for use with
 foreign module repository systems such as Maven. This specification does
 not define the semantics of these strings.
Artifact: ":" StringLiteral
Classifier: ":" StringLiteral
A module may import other modules.
ModuleBody: "{" ModuleImport* "}"
A module import statement specifies an imported module and its version.

ModuleImport: Annotations "import" (Module | ModuleSpecifier) Version ";"
The name of an imported module may be specified using the usual syntax
 for a module name, as a literal string, or, if the imported module resides in
 a foreign module repository, as a module specifier.
Note: it is currently illegal to explicitly import the
 module ceylon.language. The language module is always
 implicitly imported.

The string literal after the imported module name or module specifier
 gives the version of the imported module.
An imported module may be annotated optional and/or
 shared.
	If module x has a shared
 import of module y, then any module that imports
 x implicitly imports y.

	If module x has an optional
 import of module y, then x may
 be executed even if y is not available at runtime.

If a declaration belonging to module x is visible
 outside the module and involves types imported from a different module
 y, then the module import of y in the
 module descriptor for x must be shared.
"The best-ever ORM solution!"
license ("http://www.gnu.org/licenses/lgpl.html")
module org.hibernate "3.0.0.beta" {
 shared import ceylon.language "1.0.1";
 import javax.sql "4.0";
}
"The test suite for Hibernate"
license ("http://www.gnu.org/licenses/lgpl.html")
module org.hibernate.test "3.0.0.beta" {
 import org.hibernate "3.0.0.beta";
 TestSuite().run();
}
TODO: do we allow procedural code in the body of a
 module?

